Jing Yang, Haozhe Li, Zhou Jiang, Dong Zhang, Xiaoli Yue, S. Du
{"title":"颜色引导卷积网络在点云语义分割中的应用","authors":"Jing Yang, Haozhe Li, Zhou Jiang, Dong Zhang, Xiaoli Yue, S. Du","doi":"10.1177/17298806221098506","DOIUrl":null,"url":null,"abstract":"Point cloud semantic segmentation based on deep learning methods is still a challenge due to the irregularity of structures and uncertainty of sampling. Color information often contains a lot of prior information, whereas the existing methods do not attach more importance to it. To deal with this problem, we propose a novel hard attention mechanism, named color-guided convolution. This convolution operator learns the correlation between geometric and color information by reordering the local points with color-indicated vectors. In addition, the global feature fusion is proposed to rectify features selected by the feature selecting unit. Experimental results and comparisons with recent methods demonstrate the superiority of our approach.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color guided convolutional network for point cloud semantic segmentation\",\"authors\":\"Jing Yang, Haozhe Li, Zhou Jiang, Dong Zhang, Xiaoli Yue, S. Du\",\"doi\":\"10.1177/17298806221098506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud semantic segmentation based on deep learning methods is still a challenge due to the irregularity of structures and uncertainty of sampling. Color information often contains a lot of prior information, whereas the existing methods do not attach more importance to it. To deal with this problem, we propose a novel hard attention mechanism, named color-guided convolution. This convolution operator learns the correlation between geometric and color information by reordering the local points with color-indicated vectors. In addition, the global feature fusion is proposed to rectify features selected by the feature selecting unit. Experimental results and comparisons with recent methods demonstrate the superiority of our approach.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221098506\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221098506","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Color guided convolutional network for point cloud semantic segmentation
Point cloud semantic segmentation based on deep learning methods is still a challenge due to the irregularity of structures and uncertainty of sampling. Color information often contains a lot of prior information, whereas the existing methods do not attach more importance to it. To deal with this problem, we propose a novel hard attention mechanism, named color-guided convolution. This convolution operator learns the correlation between geometric and color information by reordering the local points with color-indicated vectors. In addition, the global feature fusion is proposed to rectify features selected by the feature selecting unit. Experimental results and comparisons with recent methods demonstrate the superiority of our approach.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.