细胞内钾对人间充质干细胞和血液淋巴细胞生长和增殖的影响

{"title":"细胞内钾对人间充质干细胞和血液淋巴细胞生长和增殖的影响","authors":"","doi":"10.33594/000000635","DOIUrl":null,"url":null,"abstract":"Many data show that K+ ions are essential for cell proliferation. In this brief review, we summarize our own studies and literature data that characterize the relationship between modulations of intracellular K+ content and the intensity of cell proliferation. Using flame emission assay we compared the transport of monovalent cations in transformed cells and in human mesenchymal stem cells in growing cultures, as well as during stress-induced cell cycle arrest and transition from monolayer (2D) to three-dimensional (3D) spheroids. A decrease in the intracellular content of K+ (evaluated as the ratio of the content of K+ in cells to the mass of cellular protein) associated with the accumulation of G1 cells in the population and accompanied by a stop in proliferation was revealed. The relationship between intracellular K+ and initiation of cell proliferation was further analyzed in human blood lymphocytes (HBL) as a model for the transition of cells from quiescence to proliferation. In HBL stimulated to proliferate, the content of K+ in cells increases during the transition G0/G1/S, accompanying the growth of small lymphocytes into blasts. Cellular water content, calculated from buoyant cell density, is higher in proliferating HBLs and in Jurkat leukemic T cells than in resting HBL. Available data suggest that intracellular K+ is important for successful cell proliferation as the main intracellular ion involved in the regulation of cell volume during the transition from quiescence to proliferation, and high K+ content and associated high water content in the cell are a characteristic feature of cell proliferation and transformation.","PeriodicalId":74396,"journal":{"name":"Paracelsus proceedings of experimental medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracellular Potassium in Cell Growth and Proliferation of Human Mesenchymal Stem Cells and Blood Lymphocytes\",\"authors\":\"\",\"doi\":\"10.33594/000000635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many data show that K+ ions are essential for cell proliferation. In this brief review, we summarize our own studies and literature data that characterize the relationship between modulations of intracellular K+ content and the intensity of cell proliferation. Using flame emission assay we compared the transport of monovalent cations in transformed cells and in human mesenchymal stem cells in growing cultures, as well as during stress-induced cell cycle arrest and transition from monolayer (2D) to three-dimensional (3D) spheroids. A decrease in the intracellular content of K+ (evaluated as the ratio of the content of K+ in cells to the mass of cellular protein) associated with the accumulation of G1 cells in the population and accompanied by a stop in proliferation was revealed. The relationship between intracellular K+ and initiation of cell proliferation was further analyzed in human blood lymphocytes (HBL) as a model for the transition of cells from quiescence to proliferation. In HBL stimulated to proliferate, the content of K+ in cells increases during the transition G0/G1/S, accompanying the growth of small lymphocytes into blasts. Cellular water content, calculated from buoyant cell density, is higher in proliferating HBLs and in Jurkat leukemic T cells than in resting HBL. Available data suggest that intracellular K+ is important for successful cell proliferation as the main intracellular ion involved in the regulation of cell volume during the transition from quiescence to proliferation, and high K+ content and associated high water content in the cell are a characteristic feature of cell proliferation and transformation.\",\"PeriodicalId\":74396,\"journal\":{\"name\":\"Paracelsus proceedings of experimental medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paracelsus proceedings of experimental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paracelsus proceedings of experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多数据表明,K+离子对细胞增殖至关重要。在这篇简短的综述中,我们总结了我们自己的研究和文献数据,这些研究和数据描述了细胞内K+含量的调节与细胞增殖强度之间的关系。使用火焰发射分析,我们比较了生长培养物中转化细胞和人间充质干细胞中单价阳离子的转运,以及应激诱导的细胞周期停滞和从单层(2D)到三维(3D)球体的过渡过程。细胞内K+含量的降低(评估为细胞中K+含量与细胞蛋白质质量的比率)与群体中G1细胞的积累有关,并伴随着增殖的停止。在人血淋巴细胞(HBL)中进一步分析了细胞内K+与细胞增殖起始之间的关系,作为细胞从静止向增殖过渡的模型。在刺激增殖的HBL中,细胞中K+的含量在G0/G1/S过渡期间增加,伴随着小淋巴细胞向成纤维细胞的生长。根据浮力细胞密度计算,增殖的HBL和Jurkat白血病T细胞的细胞含水量高于静止的HBL。现有数据表明,细胞内K+对成功的细胞增殖很重要,因为在从静止到增殖的过渡过程中,细胞内的主要离子参与细胞体积的调节,细胞内高K+含量和相关的高含水量是细胞增殖和转化的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intracellular Potassium in Cell Growth and Proliferation of Human Mesenchymal Stem Cells and Blood Lymphocytes
Many data show that K+ ions are essential for cell proliferation. In this brief review, we summarize our own studies and literature data that characterize the relationship between modulations of intracellular K+ content and the intensity of cell proliferation. Using flame emission assay we compared the transport of monovalent cations in transformed cells and in human mesenchymal stem cells in growing cultures, as well as during stress-induced cell cycle arrest and transition from monolayer (2D) to three-dimensional (3D) spheroids. A decrease in the intracellular content of K+ (evaluated as the ratio of the content of K+ in cells to the mass of cellular protein) associated with the accumulation of G1 cells in the population and accompanied by a stop in proliferation was revealed. The relationship between intracellular K+ and initiation of cell proliferation was further analyzed in human blood lymphocytes (HBL) as a model for the transition of cells from quiescence to proliferation. In HBL stimulated to proliferate, the content of K+ in cells increases during the transition G0/G1/S, accompanying the growth of small lymphocytes into blasts. Cellular water content, calculated from buoyant cell density, is higher in proliferating HBLs and in Jurkat leukemic T cells than in resting HBL. Available data suggest that intracellular K+ is important for successful cell proliferation as the main intracellular ion involved in the regulation of cell volume during the transition from quiescence to proliferation, and high K+ content and associated high water content in the cell are a characteristic feature of cell proliferation and transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trimethylamine N-Oxide (TMAO): a Unique Counteracting Osmolyte? Intracellular Potassium in Cell Growth and Proliferation of Human Mesenchymal Stem Cells and Blood Lymphocytes Reduced Hepatocyte Bicarbonate Output Accelerates Periductal Inflammation and Fibrosis in mdr2-/- Mouse Liver Molecular Insights on Shigellosis: How the Interaction Between Invasin IpaA and Vinculin Hijacks Cellular Mechanotransduction Computation of the Balance of Monovalent Ion Fluxes in the U937 Cell as an Example of a Proliferating Animal Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1