阀座表面保护用FE3AL和钨铬钴合金6涂层的耐磨性

IF 0.4 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Scientific Journal of Silesian University of Technology-Series Transport Pub Date : 2023-03-01 DOI:10.20858/sjsutst.2023.118.15
B. Szczucka-Lasota, W. Tarasiuk, P. Cybulko, T. Wȩgrzyn
{"title":"阀座表面保护用FE3AL和钨铬钴合金6涂层的耐磨性","authors":"B. Szczucka-Lasota, W. Tarasiuk, P. Cybulko, T. Wȩgrzyn","doi":"10.20858/sjsutst.2023.118.15","DOIUrl":null,"url":null,"abstract":"The development of a technology that increases the service life of valve seats in CNG/LNG-powered vehicles requires the appropriate selection of material and the technology of its application. Commercially used valve seat materials show accelerated wear under operating conditions, especially in natural gas vehicle engines. The authors developed a new material concept and a new technological concept for the protection of the valve seat in CNG/LNG-powered vehicles. This article aims to present the first stage of tribological research. Two materials were used in the research: Stellite 6 alloy and Fe3Al intermetal. A commonly used material for valve seats of combustion engines is Stellite 6. The Fe3Al is the new proposed material coating for the protection of the valve seats of internal combustion engines. This article compares the abrasive wear resistance of these materials. The abrasion tests were performed on a T-11 pin-on-disc tester, and the counter-sample was steel S235JR. The test conditions were similar to those prevailing during the operation of the valves in the head of the internal combustion engine, without the influence of temperature. The obtained results indicate that the Fe3Al intermetal is characterized by a lower coefficient of friction and lower wear intensity than Stellite 6. The results confirm that the Fe3Al phase is a prospective material to be used as a protective material on the valve seat of vehicles.","PeriodicalId":43740,"journal":{"name":"Scientific Journal of Silesian University of Technology-Series Transport","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ABRASIVE WEAR RESISTANCE OF FE3AL AND STELLITE 6 COATINGS FOR THE PROTECTION OF VALVE SEATS SURFACES\",\"authors\":\"B. Szczucka-Lasota, W. Tarasiuk, P. Cybulko, T. Wȩgrzyn\",\"doi\":\"10.20858/sjsutst.2023.118.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a technology that increases the service life of valve seats in CNG/LNG-powered vehicles requires the appropriate selection of material and the technology of its application. Commercially used valve seat materials show accelerated wear under operating conditions, especially in natural gas vehicle engines. The authors developed a new material concept and a new technological concept for the protection of the valve seat in CNG/LNG-powered vehicles. This article aims to present the first stage of tribological research. Two materials were used in the research: Stellite 6 alloy and Fe3Al intermetal. A commonly used material for valve seats of combustion engines is Stellite 6. The Fe3Al is the new proposed material coating for the protection of the valve seats of internal combustion engines. This article compares the abrasive wear resistance of these materials. The abrasion tests were performed on a T-11 pin-on-disc tester, and the counter-sample was steel S235JR. The test conditions were similar to those prevailing during the operation of the valves in the head of the internal combustion engine, without the influence of temperature. The obtained results indicate that the Fe3Al intermetal is characterized by a lower coefficient of friction and lower wear intensity than Stellite 6. The results confirm that the Fe3Al phase is a prospective material to be used as a protective material on the valve seat of vehicles.\",\"PeriodicalId\":43740,\"journal\":{\"name\":\"Scientific Journal of Silesian University of Technology-Series Transport\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Silesian University of Technology-Series Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20858/sjsutst.2023.118.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Silesian University of Technology-Series Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20858/sjsutst.2023.118.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

开发一种提高CNG/LNG动力汽车阀座使用寿命的技术,需要适当选择材料及其应用技术。商业使用的阀座材料在运行条件下表现出加速磨损,特别是在天然气汽车发动机中。作者提出了一种新的材料概念和新的技术概念来保护CNG/LNG动力汽车的阀座。本文旨在介绍摩擦学研究的第一阶段。研究中使用了两种材料:钨铬钴合金6和Fe3Al中间金属。用于内燃机气门座的常用材料是钨铬钴合金6。Fe3Al是一种新提出的用于保护内燃机气门座的材料涂层。本文对这些材料的耐磨性进行了比较。磨损试验在T-11销盘试验机上进行,对试样为S235JR钢。在没有温度影响的情况下,测试条件类似于内燃机头部中的气门操作期间的主要条件。所获得的结果表明,Fe3Al中间金属的特征在于比钨铬钴合金6具有更低的摩擦系数和更低的磨损强度。结果证实,Fe3Al相是一种有望用作车辆阀座保护材料的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABRASIVE WEAR RESISTANCE OF FE3AL AND STELLITE 6 COATINGS FOR THE PROTECTION OF VALVE SEATS SURFACES
The development of a technology that increases the service life of valve seats in CNG/LNG-powered vehicles requires the appropriate selection of material and the technology of its application. Commercially used valve seat materials show accelerated wear under operating conditions, especially in natural gas vehicle engines. The authors developed a new material concept and a new technological concept for the protection of the valve seat in CNG/LNG-powered vehicles. This article aims to present the first stage of tribological research. Two materials were used in the research: Stellite 6 alloy and Fe3Al intermetal. A commonly used material for valve seats of combustion engines is Stellite 6. The Fe3Al is the new proposed material coating for the protection of the valve seats of internal combustion engines. This article compares the abrasive wear resistance of these materials. The abrasion tests were performed on a T-11 pin-on-disc tester, and the counter-sample was steel S235JR. The test conditions were similar to those prevailing during the operation of the valves in the head of the internal combustion engine, without the influence of temperature. The obtained results indicate that the Fe3Al intermetal is characterized by a lower coefficient of friction and lower wear intensity than Stellite 6. The results confirm that the Fe3Al phase is a prospective material to be used as a protective material on the valve seat of vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
52
审稿时长
20 weeks
期刊最新文献
PERSPECTIVES OF MULTIFUNCTIONAL INTEGRATED SUBURBAN-URBAN RAIL TRANSPORT DEVELOPMENT ITS-PRO-FLOW: A NEW ENHANCED SHORT-TERM TRAFFIC FLOW PREDICTION FOR INTELLIGENT TRANSPORTATION SYSTEMS OPTIMAL DOCKING PROBLEM OF UAV AT DETECTED MOVING OBJECT FACTORS RELATED TO MOTORCYCLING PERFORMANCE OF THE ELDERLY: A CASE STUDY OF KHI LEK SUBDISTRICT, UBON RATCHATHANI PROVINCE, THAILAND EVALUATION OF THE TECHNOLOGICAL PROCESS OF WAGON PROCESSING AT SHUNTING STATIONS USING THE SIMULATION MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1