L. A. Núñez-Rodríguez, M. A. Encinas-Romero, A. Gómez-Álvarez, J. Valenzuela-García, Guillermo C. Tiburcio-Munive
{"title":"α和β硅灰石生物陶瓷在模拟体液中的生物活性评价","authors":"L. A. Núñez-Rodríguez, M. A. Encinas-Romero, A. Gómez-Álvarez, J. Valenzuela-García, Guillermo C. Tiburcio-Munive","doi":"10.4236/JBNB.2018.93015","DOIUrl":null,"url":null,"abstract":"Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical properties in the materials. The products were characterized by TGA-DTA, XRD, FT-IR, SEM-EDS, TEM and XPS techniques. The results indicate the presence of two polymorphic phases of wollastonite, the β-wollastonite and α-wollastonite with a transition temperature of the β phase to α phase at approximately 1250℃. These materials were soaked in a simulated body fluid (SBF) during 1, 2 and 3 weeks, to study their solubility and bioactivity. The effect of different wollastonite phases on the solubility of Ca and Si, as well as the capacity of producing layers of “newly formed apatite” on the surfaces of these materials in SBF solution were analyzed.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"09 1","pages":"263-276"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Evaluation of Bioactive Properties of α and β Wollastonite Bioceramics Soaked in a Simulated Body Fluid\",\"authors\":\"L. A. Núñez-Rodríguez, M. A. Encinas-Romero, A. Gómez-Álvarez, J. Valenzuela-García, Guillermo C. Tiburcio-Munive\",\"doi\":\"10.4236/JBNB.2018.93015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical properties in the materials. The products were characterized by TGA-DTA, XRD, FT-IR, SEM-EDS, TEM and XPS techniques. The results indicate the presence of two polymorphic phases of wollastonite, the β-wollastonite and α-wollastonite with a transition temperature of the β phase to α phase at approximately 1250℃. These materials were soaked in a simulated body fluid (SBF) during 1, 2 and 3 weeks, to study their solubility and bioactivity. The effect of different wollastonite phases on the solubility of Ca and Si, as well as the capacity of producing layers of “newly formed apatite” on the surfaces of these materials in SBF solution were analyzed.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"09 1\",\"pages\":\"263-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2018.93015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2018.93015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Bioactive Properties of α and β Wollastonite Bioceramics Soaked in a Simulated Body Fluid
Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical properties in the materials. The products were characterized by TGA-DTA, XRD, FT-IR, SEM-EDS, TEM and XPS techniques. The results indicate the presence of two polymorphic phases of wollastonite, the β-wollastonite and α-wollastonite with a transition temperature of the β phase to α phase at approximately 1250℃. These materials were soaked in a simulated body fluid (SBF) during 1, 2 and 3 weeks, to study their solubility and bioactivity. The effect of different wollastonite phases on the solubility of Ca and Si, as well as the capacity of producing layers of “newly formed apatite” on the surfaces of these materials in SBF solution were analyzed.