快速旋转湍流对流的地转状态

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2021-01-26 DOI:10.1080/14685248.2021.1876877
R. Kunnen
{"title":"快速旋转湍流对流的地转状态","authors":"R. Kunnen","doi":"10.1080/14685248.2021.1876877","DOIUrl":null,"url":null,"abstract":"Rotating Rayleigh–Bénard convection is a simple model system used to study the interplay of buoyant forcing and rotation. Many recent studies have focused on the geostrophic regime of turbulent rotating convection where the principal balance of forces is between the Coriolis force and the pressure gradient. This regime is believed to be representative of conditions in geophysical and astrophysical flows. We hope to be able to extrapolate findings from laboratory experiments and numerical simulations towards these large-scale natural flows. In this paper I sketch the phase diagram of the geostrophic regime of rotating convection, put experimental and numerical studies in their place in these diagrams and discuss the partitioning into subranges characterised by different flow structures and heat transfer scaling. I also discuss some complications faced by experimentalists, such as constraints on the dimensions of the convection cell, wall modes near the sidewall and centrifugal buoyancy.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14685248.2021.1876877","citationCount":"29","resultStr":"{\"title\":\"The geostrophic regime of rapidly rotating turbulent convection\",\"authors\":\"R. Kunnen\",\"doi\":\"10.1080/14685248.2021.1876877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotating Rayleigh–Bénard convection is a simple model system used to study the interplay of buoyant forcing and rotation. Many recent studies have focused on the geostrophic regime of turbulent rotating convection where the principal balance of forces is between the Coriolis force and the pressure gradient. This regime is believed to be representative of conditions in geophysical and astrophysical flows. We hope to be able to extrapolate findings from laboratory experiments and numerical simulations towards these large-scale natural flows. In this paper I sketch the phase diagram of the geostrophic regime of rotating convection, put experimental and numerical studies in their place in these diagrams and discuss the partitioning into subranges characterised by different flow structures and heat transfer scaling. I also discuss some complications faced by experimentalists, such as constraints on the dimensions of the convection cell, wall modes near the sidewall and centrifugal buoyancy.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14685248.2021.1876877\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2021.1876877\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1876877","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 29

摘要

旋转Rayleigh–Bénard对流是一个简单的模型系统,用于研究浮力和旋转的相互作用。最近的许多研究都集中在湍流旋转对流的地转状态上,其中力的主要平衡在科里奥利力和压力梯度之间。这种情况被认为是地球物理和天体物理流动条件的代表。我们希望能够从实验室实验和数值模拟中推断出这些大规模自然流动的结果。在本文中,我绘制了旋转对流地转区的相图,将实验和数值研究放在这些图中,并讨论了以不同的流动结构和传热标度为特征的子范围的划分。我还讨论了实验者面临的一些复杂问题,如对流池尺寸的限制、侧壁附近的壁模式和离心浮力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The geostrophic regime of rapidly rotating turbulent convection
Rotating Rayleigh–Bénard convection is a simple model system used to study the interplay of buoyant forcing and rotation. Many recent studies have focused on the geostrophic regime of turbulent rotating convection where the principal balance of forces is between the Coriolis force and the pressure gradient. This regime is believed to be representative of conditions in geophysical and astrophysical flows. We hope to be able to extrapolate findings from laboratory experiments and numerical simulations towards these large-scale natural flows. In this paper I sketch the phase diagram of the geostrophic regime of rotating convection, put experimental and numerical studies in their place in these diagrams and discuss the partitioning into subranges characterised by different flow structures and heat transfer scaling. I also discuss some complications faced by experimentalists, such as constraints on the dimensions of the convection cell, wall modes near the sidewall and centrifugal buoyancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1