Tyche:Python中的概率推理和信念建模库

Padraig X. Lamont
{"title":"Tyche:Python中的概率推理和信念建模库","authors":"Padraig X. Lamont","doi":"10.48550/arXiv.2208.09838","DOIUrl":null,"url":null,"abstract":"This paper presents Tyche, a Python library to facilitate probabilistic reasoning in uncertain worlds through the construction, querying, and learning of belief models. Tyche uses aleatoric description logic (ADL), which provides computational advantages in its evaluation over other description logics. Tyche belief models can be succinctly created by defining classes of individuals, the probabilistic beliefs about them (concepts), and the probabilistic relationships between them (roles). We also introduce a method of observation propagation to facilitate learning from complex ADL observations. A demonstration of Tyche to predict the author of anonymised messages, and to extract author writing tendencies from anonymised messages, is provided. Tyche has the potential to assist in the development of expert systems, knowledge extraction systems, and agents to play games with incomplete and probabilistic information.","PeriodicalId":91448,"journal":{"name":"Applied informatics","volume":"1 1","pages":"381-396"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tyche: A library for probabilistic reasoning and belief modelling in Python\",\"authors\":\"Padraig X. Lamont\",\"doi\":\"10.48550/arXiv.2208.09838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Tyche, a Python library to facilitate probabilistic reasoning in uncertain worlds through the construction, querying, and learning of belief models. Tyche uses aleatoric description logic (ADL), which provides computational advantages in its evaluation over other description logics. Tyche belief models can be succinctly created by defining classes of individuals, the probabilistic beliefs about them (concepts), and the probabilistic relationships between them (roles). We also introduce a method of observation propagation to facilitate learning from complex ADL observations. A demonstration of Tyche to predict the author of anonymised messages, and to extract author writing tendencies from anonymised messages, is provided. Tyche has the potential to assist in the development of expert systems, knowledge extraction systems, and agents to play games with incomplete and probabilistic information.\",\"PeriodicalId\":91448,\"journal\":{\"name\":\"Applied informatics\",\"volume\":\"1 1\",\"pages\":\"381-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了Tyche,一个Python库,通过构建、查询和学习信念模型来促进不确定世界中的概率推理。Tyche使用任意描述逻辑(ADL),与其他描述逻辑相比,它在计算方面具有优势。Tyche信念模型可以通过定义个人类别、关于他们的概率信念(概念)以及他们之间的概率关系(角色)来简洁地创建。我们还引入了一种观测传播方法,以方便从复杂的ADL观测中学习。给出了Tyche预测匿名信息作者和从匿名信息中提取作者写作倾向的实例。Tyche有潜力帮助开发专家系统、知识提取系统,以及使用不完整和概率信息玩游戏的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tyche: A library for probabilistic reasoning and belief modelling in Python
This paper presents Tyche, a Python library to facilitate probabilistic reasoning in uncertain worlds through the construction, querying, and learning of belief models. Tyche uses aleatoric description logic (ADL), which provides computational advantages in its evaluation over other description logics. Tyche belief models can be succinctly created by defining classes of individuals, the probabilistic beliefs about them (concepts), and the probabilistic relationships between them (roles). We also introduce a method of observation propagation to facilitate learning from complex ADL observations. A demonstration of Tyche to predict the author of anonymised messages, and to extract author writing tendencies from anonymised messages, is provided. Tyche has the potential to assist in the development of expert systems, knowledge extraction systems, and agents to play games with incomplete and probabilistic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Financial Literacy via Semi-supervised Learning XC-NAS: A New Cellular Encoding Approach for Neural Architecture Search of Multi-path Convolutional Neural Networks SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining Environments: A Novel Dataset and ROS-Based Automatic Annotation Pipeline Approximating Solutions to the Knapsack Problem Using the Lagrangian Dual Framework Improvement of Arc Consistency in Asynchronous Forward Bounding Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1