{"title":"油烟机一体化空气净化器的室内空气质量及节能潜力提升","authors":"Yumei Hou, Yukun Xu, Zhi Liu, Ziyin Lin, Wuhao Xie, Changsheng Cao, Zhiwei Zheng, Jun Gao","doi":"10.1080/23744731.2023.2234238","DOIUrl":null,"url":null,"abstract":"Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor air quality and energy-saving potential improvement of a range-hood-integrated air cleaner\",\"authors\":\"Yumei Hou, Yukun Xu, Zhi Liu, Ziyin Lin, Wuhao Xie, Changsheng Cao, Zhiwei Zheng, Jun Gao\",\"doi\":\"10.1080/23744731.2023.2234238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.\",\"PeriodicalId\":21556,\"journal\":{\"name\":\"Science and Technology for the Built Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology for the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23744731.2023.2234238\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2234238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Indoor air quality and energy-saving potential improvement of a range-hood-integrated air cleaner
Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.
期刊介绍:
Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.