{"title":"函数数据协方差结构差异的稳健非参数假设检验","authors":"Kelly Ramsay, Shoja'eddin Chenouri","doi":"10.1002/cjs.11767","DOIUrl":null,"url":null,"abstract":"<p>We develop a group of robust, nonparametric hypothesis tests that detect differences between the covariance operators of several populations of functional data. These tests, called functional Kruskal–Wallis tests for covariance, or FKWC tests, are based on functional data depth ranks. FKWC tests work well even when the data are heavy-tailed, which is shown both in simulation and theory. FKWC tests offer several other benefits: they have a simple asymptotic distribution under the null hypothesis, they are computationally cheap, and they possess transformation-invariance properties. We show that under general alternative hypotheses, these tests are consistent under mild, nonparametric assumptions. As a result, we introduce a new functional depth function called <math>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup></math>-root depth that works well for the purposes of detecting differences in magnitude between covariance kernels. We present an analysis of the FKWC test based on <math>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup></math>-root depth under local alternatives. Through simulations, when the true covariance kernels have an infinite number of positive eigenvalues, we show that these tests have higher power than their competitors while maintaining their nominal size. We also provide a method for computing sample size and performing multiple comparisons.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 1","pages":"43-78"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust nonparametric hypothesis tests for differences in the covariance structure of functional data\",\"authors\":\"Kelly Ramsay, Shoja'eddin Chenouri\",\"doi\":\"10.1002/cjs.11767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a group of robust, nonparametric hypothesis tests that detect differences between the covariance operators of several populations of functional data. These tests, called functional Kruskal–Wallis tests for covariance, or FKWC tests, are based on functional data depth ranks. FKWC tests work well even when the data are heavy-tailed, which is shown both in simulation and theory. FKWC tests offer several other benefits: they have a simple asymptotic distribution under the null hypothesis, they are computationally cheap, and they possess transformation-invariance properties. We show that under general alternative hypotheses, these tests are consistent under mild, nonparametric assumptions. As a result, we introduce a new functional depth function called <math>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup></math>-root depth that works well for the purposes of detecting differences in magnitude between covariance kernels. We present an analysis of the FKWC test based on <math>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup></math>-root depth under local alternatives. Through simulations, when the true covariance kernels have an infinite number of positive eigenvalues, we show that these tests have higher power than their competitors while maintaining their nominal size. We also provide a method for computing sample size and performing multiple comparisons.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 1\",\"pages\":\"43-78\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11767\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11767","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Robust nonparametric hypothesis tests for differences in the covariance structure of functional data
We develop a group of robust, nonparametric hypothesis tests that detect differences between the covariance operators of several populations of functional data. These tests, called functional Kruskal–Wallis tests for covariance, or FKWC tests, are based on functional data depth ranks. FKWC tests work well even when the data are heavy-tailed, which is shown both in simulation and theory. FKWC tests offer several other benefits: they have a simple asymptotic distribution under the null hypothesis, they are computationally cheap, and they possess transformation-invariance properties. We show that under general alternative hypotheses, these tests are consistent under mild, nonparametric assumptions. As a result, we introduce a new functional depth function called -root depth that works well for the purposes of detecting differences in magnitude between covariance kernels. We present an analysis of the FKWC test based on -root depth under local alternatives. Through simulations, when the true covariance kernels have an infinite number of positive eigenvalues, we show that these tests have higher power than their competitors while maintaining their nominal size. We also provide a method for computing sample size and performing multiple comparisons.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.