{"title":"毛囊淋巴瘤的分子发病机制:从遗传学到临床实践","authors":"C. López, P. Mozas, A. López-Guillermo, S. Beà","doi":"10.3390/hemato3040041","DOIUrl":null,"url":null,"abstract":"Follicular lymphoma (FL), a generally indolent disease that derives from germinal center (GC) B cells, represents around 20–25% of all new lymphomas diagnosed in Western countries. The characteristic t(14;18)(q32;q21) translocation that places the BCL2 oncogene under control of the immunoglobulin heavy-chain enhancer occurs in pro- or pre-B cells. However, additional secondary alterations are required for the development of overt FL, which mainly affects genes involved in epigenetic and transcriptional regulation, signaling and B cell differentiation, the BCR/NF-κB pathway, and proliferation/apoptosis. On the other hand, new insights into the FL pathogenesis suggest that FL lacking the BCL2 translocation might be a distinct biological entity with genomic features different from the classical FL. Although FL is considered an indolent disease, around 10–20% of cases eventually transform to an aggressive lymphoma, usually a diffuse large B cell lymphoma, generally by a divergent evolution process from a common altered precursor cell acquiring genomic alterations involved in the cell cycle and DNA damage responses. Importantly, FL tumor cells require interaction with the microenvironment, which sustains cell survival and proliferation. Although the use of rituximab has improved the outlook of most FL patients, further genomic studies are needed to identify those of high risk who can benefit from innovative therapies. This review provides an updated synopsis of FL, including the molecular and cellular pathogenesis, key events of transformation, and targeted treatments.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Molecular Pathogenesis of Follicular Lymphoma: From Genetics to Clinical Practice\",\"authors\":\"C. López, P. Mozas, A. López-Guillermo, S. Beà\",\"doi\":\"10.3390/hemato3040041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Follicular lymphoma (FL), a generally indolent disease that derives from germinal center (GC) B cells, represents around 20–25% of all new lymphomas diagnosed in Western countries. The characteristic t(14;18)(q32;q21) translocation that places the BCL2 oncogene under control of the immunoglobulin heavy-chain enhancer occurs in pro- or pre-B cells. However, additional secondary alterations are required for the development of overt FL, which mainly affects genes involved in epigenetic and transcriptional regulation, signaling and B cell differentiation, the BCR/NF-κB pathway, and proliferation/apoptosis. On the other hand, new insights into the FL pathogenesis suggest that FL lacking the BCL2 translocation might be a distinct biological entity with genomic features different from the classical FL. Although FL is considered an indolent disease, around 10–20% of cases eventually transform to an aggressive lymphoma, usually a diffuse large B cell lymphoma, generally by a divergent evolution process from a common altered precursor cell acquiring genomic alterations involved in the cell cycle and DNA damage responses. Importantly, FL tumor cells require interaction with the microenvironment, which sustains cell survival and proliferation. Although the use of rituximab has improved the outlook of most FL patients, further genomic studies are needed to identify those of high risk who can benefit from innovative therapies. This review provides an updated synopsis of FL, including the molecular and cellular pathogenesis, key events of transformation, and targeted treatments.\",\"PeriodicalId\":93705,\"journal\":{\"name\":\"Hemato\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemato\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hemato3040041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemato","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hemato3040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Molecular Pathogenesis of Follicular Lymphoma: From Genetics to Clinical Practice
Follicular lymphoma (FL), a generally indolent disease that derives from germinal center (GC) B cells, represents around 20–25% of all new lymphomas diagnosed in Western countries. The characteristic t(14;18)(q32;q21) translocation that places the BCL2 oncogene under control of the immunoglobulin heavy-chain enhancer occurs in pro- or pre-B cells. However, additional secondary alterations are required for the development of overt FL, which mainly affects genes involved in epigenetic and transcriptional regulation, signaling and B cell differentiation, the BCR/NF-κB pathway, and proliferation/apoptosis. On the other hand, new insights into the FL pathogenesis suggest that FL lacking the BCL2 translocation might be a distinct biological entity with genomic features different from the classical FL. Although FL is considered an indolent disease, around 10–20% of cases eventually transform to an aggressive lymphoma, usually a diffuse large B cell lymphoma, generally by a divergent evolution process from a common altered precursor cell acquiring genomic alterations involved in the cell cycle and DNA damage responses. Importantly, FL tumor cells require interaction with the microenvironment, which sustains cell survival and proliferation. Although the use of rituximab has improved the outlook of most FL patients, further genomic studies are needed to identify those of high risk who can benefit from innovative therapies. This review provides an updated synopsis of FL, including the molecular and cellular pathogenesis, key events of transformation, and targeted treatments.