{"title":"火用分析在120mw单热回热燃煤电厂性能分析中的应用","authors":"S. Arpit, Praveen kumar, P. K. Das, S. Dash","doi":"10.18186/thermal.1285229","DOIUrl":null,"url":null,"abstract":"In the present paper, a rigorous analysis of a sub-critical steam power plant (120 MW) with reheating and regenerative configuration is presented, using energy and exergy analysis. The total work output from the power plant is 121.80 MW, which is close to the real value of 120 MW. The calculated energy efficiency of the steam power plant is 34.7%, while its exergy efficiency is 32%. In addition to it, energy analysis introduces the condenser as a major source of heat loss, on other hand, exergy analysis introduces the boiler as a major source of exergy destruction. Further to understand the effect of main steam temperature, reheating temperature and condenser pressure on the power plant, a parametric study is being conducted.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of exergy analysis in understanding the performance of a coal-fired steam power plant (120 mw) with single reheat and regenerative configuration\",\"authors\":\"S. Arpit, Praveen kumar, P. K. Das, S. Dash\",\"doi\":\"10.18186/thermal.1285229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, a rigorous analysis of a sub-critical steam power plant (120 MW) with reheating and regenerative configuration is presented, using energy and exergy analysis. The total work output from the power plant is 121.80 MW, which is close to the real value of 120 MW. The calculated energy efficiency of the steam power plant is 34.7%, while its exergy efficiency is 32%. In addition to it, energy analysis introduces the condenser as a major source of heat loss, on other hand, exergy analysis introduces the boiler as a major source of exergy destruction. Further to understand the effect of main steam temperature, reheating temperature and condenser pressure on the power plant, a parametric study is being conducted.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1285229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Application of exergy analysis in understanding the performance of a coal-fired steam power plant (120 mw) with single reheat and regenerative configuration
In the present paper, a rigorous analysis of a sub-critical steam power plant (120 MW) with reheating and regenerative configuration is presented, using energy and exergy analysis. The total work output from the power plant is 121.80 MW, which is close to the real value of 120 MW. The calculated energy efficiency of the steam power plant is 34.7%, while its exergy efficiency is 32%. In addition to it, energy analysis introduces the condenser as a major source of heat loss, on other hand, exergy analysis introduces the boiler as a major source of exergy destruction. Further to understand the effect of main steam temperature, reheating temperature and condenser pressure on the power plant, a parametric study is being conducted.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.