K. Wang, Yanmin Zhu, Tianzi Zang, Chunyang Wang, Kuan Liu, Peibo Ma
{"title":"面向评论增强推荐的多向图对比学习","authors":"K. Wang, Yanmin Zhu, Tianzi Zang, Chunyang Wang, Kuan Liu, Peibo Ma","doi":"10.1145/3618106","DOIUrl":null,"url":null,"abstract":"Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state-of-the-arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation\",\"authors\":\"K. Wang, Yanmin Zhu, Tianzi Zang, Chunyang Wang, Kuan Liu, Peibo Ma\",\"doi\":\"10.1145/3618106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state-of-the-arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3618106\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3618106","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation
Review-based recommender systems explore semantic aspects of users’ preferences by incorporating user-generated reviews into rating-based models. Recent works have demonstrated the potential of review information to improve the recommendation capacity. However, most existing studies rely on optimizing review-based representation learning part, thus failing to explicitly capture the fine-grained semantic aspects, and also ignoring the intrinsic correlation between ratings and reviews. To address these problems, we propose a multi-aspect graph contrastive learning framework, named MAGCL, with three distinctive designs: (i) a multi-aspect representation learning module, which projects semantic relations to different subspaces by decoupling review information, and then obtains high-order decoupled representations in each aspect via graph encoder. (ii) the contrastive learning module performs graph contrastive learning to capture the correlation between rating and review patterns, which utilize unlabeled data to generate self-supervised signals, in turn, relieve the data sparsity problem of supervision signals. (iii) the multi-task learning module conducts joint training to learn high-order structure-aware yet self-discriminative node representations by combining recommendation task and self-supervised task, which helps alleviate the over-smoothing problem. Extensive experiments are conducted on four real-world review datasets and the results show the superiority of the proposed framework MAGCL compared with several state-of-the-arts. We also provide further analysis on multi-aspect representations and graph contrastive learning to verify the advantage of proposed framework.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.