{"title":"玉米、棉花和花生对行距、播种量和灌溉系统的响应","authors":"R. Sorensen, M. Lamb, C. Butts","doi":"10.1080/15427528.2022.2093809","DOIUrl":null,"url":null,"abstract":"ABSTRACT Planting crop rows closer to a drip line water source should result in increased seed development, greater crop yield, and possible water savings and may reduce seeding rate without affecting yield, resulting in lower seed costs. This research documents the yield response of corn, cotton, and peanut planted in two crop row spacings (0.76 and 0.91 m), at two seeding rates (1× and 0.5×), at four locations, and two irrigation systems (sprinkler and drip). Crops were managed using best management practices for maximum yield. Irrigation events were scheduled to minimize soil water stress. There was no yield response across all crops, locations, or irrigation systems for 0.76 versus 0.91-m crop row spacing. The 0.5× seeding rate in drip irrigation and across all sites reduced corn yield and revenue by an average 1572 kg/ha and $-94/ha, respectively. The 0.5× seeding rate in drip irrigation did not decrease yield in cotton or peanut and revenue above seed cost averaged $16 and $95/ha, respectively. It should be noted that in cotton and peanut, the 0.5× seeding rate may impose a greater risk for yield loss due to low germination due to drought (cotton) and increased disease (peanut). In conclusion, moving the seed row closer to a drip lateral had no effect on yield and using 0.5× seeding rates for these crops may not always be economical.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"37 1","pages":"323 - 340"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corn, cotton, and peanut response to row spacing, seeding rate, and irrigation system\",\"authors\":\"R. Sorensen, M. Lamb, C. Butts\",\"doi\":\"10.1080/15427528.2022.2093809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Planting crop rows closer to a drip line water source should result in increased seed development, greater crop yield, and possible water savings and may reduce seeding rate without affecting yield, resulting in lower seed costs. This research documents the yield response of corn, cotton, and peanut planted in two crop row spacings (0.76 and 0.91 m), at two seeding rates (1× and 0.5×), at four locations, and two irrigation systems (sprinkler and drip). Crops were managed using best management practices for maximum yield. Irrigation events were scheduled to minimize soil water stress. There was no yield response across all crops, locations, or irrigation systems for 0.76 versus 0.91-m crop row spacing. The 0.5× seeding rate in drip irrigation and across all sites reduced corn yield and revenue by an average 1572 kg/ha and $-94/ha, respectively. The 0.5× seeding rate in drip irrigation did not decrease yield in cotton or peanut and revenue above seed cost averaged $16 and $95/ha, respectively. It should be noted that in cotton and peanut, the 0.5× seeding rate may impose a greater risk for yield loss due to low germination due to drought (cotton) and increased disease (peanut). In conclusion, moving the seed row closer to a drip lateral had no effect on yield and using 0.5× seeding rates for these crops may not always be economical.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"37 1\",\"pages\":\"323 - 340\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2022.2093809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2022.2093809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Corn, cotton, and peanut response to row spacing, seeding rate, and irrigation system
ABSTRACT Planting crop rows closer to a drip line water source should result in increased seed development, greater crop yield, and possible water savings and may reduce seeding rate without affecting yield, resulting in lower seed costs. This research documents the yield response of corn, cotton, and peanut planted in two crop row spacings (0.76 and 0.91 m), at two seeding rates (1× and 0.5×), at four locations, and two irrigation systems (sprinkler and drip). Crops were managed using best management practices for maximum yield. Irrigation events were scheduled to minimize soil water stress. There was no yield response across all crops, locations, or irrigation systems for 0.76 versus 0.91-m crop row spacing. The 0.5× seeding rate in drip irrigation and across all sites reduced corn yield and revenue by an average 1572 kg/ha and $-94/ha, respectively. The 0.5× seeding rate in drip irrigation did not decrease yield in cotton or peanut and revenue above seed cost averaged $16 and $95/ha, respectively. It should be noted that in cotton and peanut, the 0.5× seeding rate may impose a greater risk for yield loss due to low germination due to drought (cotton) and increased disease (peanut). In conclusion, moving the seed row closer to a drip lateral had no effect on yield and using 0.5× seeding rates for these crops may not always be economical.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.