冻融循环对多年冻土区灌注桩性能的影响:工作状态和作用效应共享

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Permafrost and Periglacial Processes Pub Date : 2022-02-28 DOI:10.1002/ppp.2140
Ruiqing Shi, Z. Wen, Desheng Li, Qiang Gao, Yanjing Wei
{"title":"冻融循环对多年冻土区灌注桩性能的影响:工作状态和作用效应共享","authors":"Ruiqing Shi, Z. Wen, Desheng Li, Qiang Gao, Yanjing Wei","doi":"10.1002/ppp.2140","DOIUrl":null,"url":null,"abstract":"Owing to a minor thermal disturbance to the permafrost environment, cast‐in‐place piles are widely used for building and bridge foundations in permafrost regions. However, because of the dynamic and cyclic variation in frozen ground affected by the atmosphere, the load transfer mechanism is not yet clear, and the current design is economically insufficient. To illustrate the bearing pattern of cast‐in‐place piles subjected to freeze–thaw cycles, a systematic in situ investigation was carried out. Results show that the load from the superstructure has a marginal action effect, while freeze–thaw cycles have a more significant action effect. Freeze–thaw cycles have a decisive effect on the dynamic variations of the pile's working state and action effect sharing while the mechanisms are quite different, which vary with depths. Action effect sharing of the pile shaft and tip experiences a cyclic variation and is affected by the long‐term effect of freeze–thaw cycles. The shaft takes an increasing sharing proportion gradually and has a 19% rise after two freeze–thaw cycles, while the pile tip goes the opposite way. Two years after the building is completed, the bearing capacity is almost entirely provided by shaft resistance and mainly by the upper one‐third of the pile. This research clarifies several essential issues about the bearing pattern and provides solid scientific support and novel opinions for the pile design in permafrost regions.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"147 - 159"},"PeriodicalIF":3.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of freeze–thaw cycles on the performance of cast‐in‐place piles in permafrost regions: Working state and action effect sharing\",\"authors\":\"Ruiqing Shi, Z. Wen, Desheng Li, Qiang Gao, Yanjing Wei\",\"doi\":\"10.1002/ppp.2140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to a minor thermal disturbance to the permafrost environment, cast‐in‐place piles are widely used for building and bridge foundations in permafrost regions. However, because of the dynamic and cyclic variation in frozen ground affected by the atmosphere, the load transfer mechanism is not yet clear, and the current design is economically insufficient. To illustrate the bearing pattern of cast‐in‐place piles subjected to freeze–thaw cycles, a systematic in situ investigation was carried out. Results show that the load from the superstructure has a marginal action effect, while freeze–thaw cycles have a more significant action effect. Freeze–thaw cycles have a decisive effect on the dynamic variations of the pile's working state and action effect sharing while the mechanisms are quite different, which vary with depths. Action effect sharing of the pile shaft and tip experiences a cyclic variation and is affected by the long‐term effect of freeze–thaw cycles. The shaft takes an increasing sharing proportion gradually and has a 19% rise after two freeze–thaw cycles, while the pile tip goes the opposite way. Two years after the building is completed, the bearing capacity is almost entirely provided by shaft resistance and mainly by the upper one‐third of the pile. This research clarifies several essential issues about the bearing pattern and provides solid scientific support and novel opinions for the pile design in permafrost regions.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":\"33 1\",\"pages\":\"147 - 159\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2140\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2140","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

由于对永久冻土环境的热扰动较小,现浇桩被广泛用于永久冻土地区的建筑和桥梁基础。然而,由于受大气影响,冻土的动力和循环变化,荷载传递机制尚不明确,目前的设计在经济上不够充分。为了说明经受冻融循环的现浇桩的承载模式,进行了系统的现场调查。结果表明,上部结构荷载具有边际作用效应,而冻融循环具有更显著的作用效应。冻融循环对桩工作状态的动态变化和作用效果的共享具有决定性影响,而冻融循环的机制则截然不同,随深度而变化。桩身和桩尖的作用效应分担经历了循环变化,并受到冻融循环的长期影响。竖井的分担比例逐渐增加,在两次冻融循环后增加了19%,而桩端则相反。建筑完工两年后,承载力几乎完全由轴阻力提供,主要由桩的上部三分之一提供。本研究阐明了承载模式的几个基本问题,为多年冻土地区的桩基设计提供了坚实的科学支撑和新颖的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of freeze–thaw cycles on the performance of cast‐in‐place piles in permafrost regions: Working state and action effect sharing
Owing to a minor thermal disturbance to the permafrost environment, cast‐in‐place piles are widely used for building and bridge foundations in permafrost regions. However, because of the dynamic and cyclic variation in frozen ground affected by the atmosphere, the load transfer mechanism is not yet clear, and the current design is economically insufficient. To illustrate the bearing pattern of cast‐in‐place piles subjected to freeze–thaw cycles, a systematic in situ investigation was carried out. Results show that the load from the superstructure has a marginal action effect, while freeze–thaw cycles have a more significant action effect. Freeze–thaw cycles have a decisive effect on the dynamic variations of the pile's working state and action effect sharing while the mechanisms are quite different, which vary with depths. Action effect sharing of the pile shaft and tip experiences a cyclic variation and is affected by the long‐term effect of freeze–thaw cycles. The shaft takes an increasing sharing proportion gradually and has a 19% rise after two freeze–thaw cycles, while the pile tip goes the opposite way. Two years after the building is completed, the bearing capacity is almost entirely provided by shaft resistance and mainly by the upper one‐third of the pile. This research clarifies several essential issues about the bearing pattern and provides solid scientific support and novel opinions for the pile design in permafrost regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
8.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.
期刊最新文献
Talus and its cooling effects on the thermal regime of permafrost: A review Main results of permafrost monitoring in the French Alps through the PermaFrance network over the period 2010–2022 Lithological controls on soil properties, Snow Island, Maritime Antarctica Topographical effect of high embankments on resistivity investigation of the underlying permafrost table Best practices for using electrical resistivity tomography to investigate permafrost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1