化学稳定性对MnGa基器件制备的影响

Lijun Zhu, Jianhua Zhao
{"title":"化学稳定性对MnGa基器件制备的影响","authors":"Lijun Zhu, Jianhua Zhao","doi":"10.33079/jomm.19020303","DOIUrl":null,"url":null,"abstract":"Ferromagnetic films of L10-ordered MnGa have shown promise not only in the applications in ultrahigh-density magnetic recording and spintronic memories, oscillators, and sensors, but also in controllable studies of novel electrical transport phenomena. However, the stability of MnGa in chemicals and oxygen plasma that are commonly used in the standard micro-/nano-fabrication process has unsettled. In this work, we report a systematic study on the chemical stability of the MnGa films in acids, acetone, ethanol, deionized water, tetramethylammonium hydroxide (TMAOH) and oxygen plasma. We find that MnGa is very stable in acetone and ethanol, while can be attacked substantially if soaked in TMAOH solution for sufficiently long time. Deionized water and acids (e.g., HCl, H3PO4 and H2SO4 solutions) attack MnGa violently and should be avoided whenever possible. In addition, oxygen plasma can passivate the MnGa surface by oxidizing the surface. These results provide important information for the fabrication and the integration of MnGa based spintronic devices.","PeriodicalId":66020,"journal":{"name":"微电子制造学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Chemical Stability on the Fabrication of MnGa-based Devices\",\"authors\":\"Lijun Zhu, Jianhua Zhao\",\"doi\":\"10.33079/jomm.19020303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferromagnetic films of L10-ordered MnGa have shown promise not only in the applications in ultrahigh-density magnetic recording and spintronic memories, oscillators, and sensors, but also in controllable studies of novel electrical transport phenomena. However, the stability of MnGa in chemicals and oxygen plasma that are commonly used in the standard micro-/nano-fabrication process has unsettled. In this work, we report a systematic study on the chemical stability of the MnGa films in acids, acetone, ethanol, deionized water, tetramethylammonium hydroxide (TMAOH) and oxygen plasma. We find that MnGa is very stable in acetone and ethanol, while can be attacked substantially if soaked in TMAOH solution for sufficiently long time. Deionized water and acids (e.g., HCl, H3PO4 and H2SO4 solutions) attack MnGa violently and should be avoided whenever possible. In addition, oxygen plasma can passivate the MnGa surface by oxidizing the surface. These results provide important information for the fabrication and the integration of MnGa based spintronic devices.\",\"PeriodicalId\":66020,\"journal\":{\"name\":\"微电子制造学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微电子制造学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.33079/jomm.19020303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微电子制造学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.33079/jomm.19020303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

l10 -有序MnGa铁磁薄膜不仅在超高密度磁记录和自旋电子存储器、振荡器和传感器中有应用前景,而且在新型电输运现象的可控研究中也有应用前景。然而,在标准微/纳米制造工艺中常用的化学物质和氧等离子体中,MnGa的稳定性尚未确定。在这项工作中,我们系统地研究了MnGa薄膜在酸、丙酮、乙醇、去离子水、四甲基氢氧化铵(TMAOH)和氧等离子体中的化学稳定性。我们发现MnGa在丙酮和乙醇中非常稳定,但如果在TMAOH溶液中浸泡足够长的时间,则会受到严重的侵蚀。去离子水和酸(如HCl, H3PO4和H2SO4溶液)对MnGa有强烈的攻击,应尽可能避免使用。此外,氧等离子体可以通过氧化MnGa表面使其钝化。这些结果为基于MnGa的自旋电子器件的制造和集成提供了重要的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Chemical Stability on the Fabrication of MnGa-based Devices
Ferromagnetic films of L10-ordered MnGa have shown promise not only in the applications in ultrahigh-density magnetic recording and spintronic memories, oscillators, and sensors, but also in controllable studies of novel electrical transport phenomena. However, the stability of MnGa in chemicals and oxygen plasma that are commonly used in the standard micro-/nano-fabrication process has unsettled. In this work, we report a systematic study on the chemical stability of the MnGa films in acids, acetone, ethanol, deionized water, tetramethylammonium hydroxide (TMAOH) and oxygen plasma. We find that MnGa is very stable in acetone and ethanol, while can be attacked substantially if soaked in TMAOH solution for sufficiently long time. Deionized water and acids (e.g., HCl, H3PO4 and H2SO4 solutions) attack MnGa violently and should be avoided whenever possible. In addition, oxygen plasma can passivate the MnGa surface by oxidizing the surface. These results provide important information for the fabrication and the integration of MnGa based spintronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
46
审稿时长
4 weeks
期刊最新文献
Improvement of Environment Stability of an i-Line Chemically Amplified Photoresist Patterning with Organized Molecules New Progress of China's Integrated Circuit Design Industry Nano-Electronic Simulation Software (NESS): A Novel Open-Source TCAD Simulation Environment Influence of Chemical Stability on the Fabrication of MnGa-based Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1