不对称锥形复合材料泡沫芯夹层结构在热机械载荷作用下的强度

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2022-06-08 DOI:10.1177/10996362221106782
V. Goyal, Jacob I. Rome, D. Patel
{"title":"不对称锥形复合材料泡沫芯夹层结构在热机械载荷作用下的强度","authors":"V. Goyal, Jacob I. Rome, D. Patel","doi":"10.1177/10996362221106782","DOIUrl":null,"url":null,"abstract":"An experimental test program and companion analytical study were designed and conducted to gain understanding of the tensile failure mechanisms in asymmetrical tapered sandwich core structures at cold temperatures. Representative test coupons were subjected to a tensile load in an environmental chamber to induce foam tensile failure in the core. Finite-element modeling with a proposed maximum principal stress criterion was used to predict the failure loads of the tapered test coupon design at the test temperatures. The predicted failure loads were in good agreement with test results. An important finding is that the cure stresses in the foam are significant and should not be ignored. Additionally, the analysis correctly predicted the failure initiation location, which was verified using high speed photography during the tensile test. The study identified the critical failure regions of asymmetrical tapered sandwich core designs and the failure load dependence on the temperature gradient in the structure.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength of asymmetric tapered composite foam core sandwich structures subjected to thermomechanical loading\",\"authors\":\"V. Goyal, Jacob I. Rome, D. Patel\",\"doi\":\"10.1177/10996362221106782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental test program and companion analytical study were designed and conducted to gain understanding of the tensile failure mechanisms in asymmetrical tapered sandwich core structures at cold temperatures. Representative test coupons were subjected to a tensile load in an environmental chamber to induce foam tensile failure in the core. Finite-element modeling with a proposed maximum principal stress criterion was used to predict the failure loads of the tapered test coupon design at the test temperatures. The predicted failure loads were in good agreement with test results. An important finding is that the cure stresses in the foam are significant and should not be ignored. Additionally, the analysis correctly predicted the failure initiation location, which was verified using high speed photography during the tensile test. The study identified the critical failure regions of asymmetrical tapered sandwich core designs and the failure load dependence on the temperature gradient in the structure.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221106782\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221106782","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了解非对称锥形夹层芯结构在低温下的拉伸破坏机制,设计并实施了实验测试程序和配套分析研究。有代表性的试样在环境室中经受拉伸载荷,以诱发岩心的泡沫拉伸破坏。采用提出的最大主应力准则进行有限元建模,预测了试验温度下锥形试验板的失效载荷。预测的失效载荷与试验结果吻合较好。一个重要的发现是,固化应力在泡沫是显著的,不应忽视。此外,该分析正确预测了失效起始位置,并在拉伸试验中使用高速摄影技术进行了验证。研究确定了非对称锥形夹层堆芯设计的临界破坏区域,以及结构中温度梯度对破坏载荷的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strength of asymmetric tapered composite foam core sandwich structures subjected to thermomechanical loading
An experimental test program and companion analytical study were designed and conducted to gain understanding of the tensile failure mechanisms in asymmetrical tapered sandwich core structures at cold temperatures. Representative test coupons were subjected to a tensile load in an environmental chamber to induce foam tensile failure in the core. Finite-element modeling with a proposed maximum principal stress criterion was used to predict the failure loads of the tapered test coupon design at the test temperatures. The predicted failure loads were in good agreement with test results. An important finding is that the cure stresses in the foam are significant and should not be ignored. Additionally, the analysis correctly predicted the failure initiation location, which was verified using high speed photography during the tensile test. The study identified the critical failure regions of asymmetrical tapered sandwich core designs and the failure load dependence on the temperature gradient in the structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1