{"title":"皮尔逊系统中的稀疏估计,及其在金融市场风险中的应用","authors":"Michelle Carey, Christian Genest, James O. Ramsay","doi":"10.1002/cjs.11754","DOIUrl":null,"url":null,"abstract":"<p>Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> of coefficients. The estimation of a Pearson density is challenging, as small variations in <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> can induce wild changes in the shape of the corresponding density <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math>. The authors show how to estimate <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math> effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11754","citationCount":"1","resultStr":"{\"title\":\"Sparse estimation within Pearson's system, with an application to financial market risk\",\"authors\":\"Michelle Carey, Christian Genest, James O. Ramsay\",\"doi\":\"10.1002/cjs.11754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$$ \\\\beta $$</annotation>\\n </semantics></math> of coefficients. The estimation of a Pearson density is challenging, as small variations in <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$$ \\\\beta $$</annotation>\\n </semantics></math> can induce wild changes in the shape of the corresponding density <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {f}_{\\\\beta } $$</annotation>\\n </semantics></math>. The authors show how to estimate <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$$ \\\\beta $$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {f}_{\\\\beta } $$</annotation>\\n </semantics></math> effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11754\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11754\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11754","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sparse estimation within Pearson's system, with an application to financial market risk
Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector of coefficients. The estimation of a Pearson density is challenging, as small variations in can induce wild changes in the shape of the corresponding density . The authors show how to estimate and effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.