石灰和肥料处理改善离子型稀土尾矿

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED Adsorption Science & Technology Pub Date : 2021-11-22 DOI:10.1155/2021/1378408
Qin Zhang, Dongmei Shen, Jie Luo, Guanyue Wan, Caiyun Zhou, X. Zhao
{"title":"石灰和肥料处理改善离子型稀土尾矿","authors":"Qin Zhang, Dongmei Shen, Jie Luo, Guanyue Wan, Caiyun Zhou, X. Zhao","doi":"10.1155/2021/1378408","DOIUrl":null,"url":null,"abstract":"To explore rare earth mine tailings improvement technology without soil dressing, we planted Chinese cabbage in pots to determine the effect of different amounts of lime combined with fertilizer on the improvement of ionic rare earth mine tailings, aiming to provide a scientific basis for the reclamation of abandoned ionic rare earth mines. The results showed that the soil substrate of the tested rare earth tailings exhibited four forms of degradation: soil acidification, soil desertification, nutrient depletion, and heavy metal contamination by rare earth elements (REEs). The application of fertilizer alone (CK treatment) did not support Chinese cabbage growth, whereas different amounts of lime combined with fertilizer supported plant growth and significantly reduced the activity of the rare earth heavy metals. The height, fresh weight, and REE content of the Chinese cabbage plants were significantly reduced with an increase in the amount of lime applied. Addition of lime not only significantly improved the soil pore space and reduced soil acidification but also significantly increased the soil nutrient content. Our findings suggest that lime combined with fertilizer can improve ionic rare earth mine tailing soil degradation, thus promoting plant growth and achieving the improvement of ionic rare earth mine tailings without soil dressing.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conditioning with Lime and Fertilizer Improves Ionic Rare Earth Mine Tailings\",\"authors\":\"Qin Zhang, Dongmei Shen, Jie Luo, Guanyue Wan, Caiyun Zhou, X. Zhao\",\"doi\":\"10.1155/2021/1378408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore rare earth mine tailings improvement technology without soil dressing, we planted Chinese cabbage in pots to determine the effect of different amounts of lime combined with fertilizer on the improvement of ionic rare earth mine tailings, aiming to provide a scientific basis for the reclamation of abandoned ionic rare earth mines. The results showed that the soil substrate of the tested rare earth tailings exhibited four forms of degradation: soil acidification, soil desertification, nutrient depletion, and heavy metal contamination by rare earth elements (REEs). The application of fertilizer alone (CK treatment) did not support Chinese cabbage growth, whereas different amounts of lime combined with fertilizer supported plant growth and significantly reduced the activity of the rare earth heavy metals. The height, fresh weight, and REE content of the Chinese cabbage plants were significantly reduced with an increase in the amount of lime applied. Addition of lime not only significantly improved the soil pore space and reduced soil acidification but also significantly increased the soil nutrient content. Our findings suggest that lime combined with fertilizer can improve ionic rare earth mine tailing soil degradation, thus promoting plant growth and achieving the improvement of ionic rare earth mine tailings without soil dressing.\",\"PeriodicalId\":7315,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/1378408\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/1378408","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

为探索无需土壤追肥的稀土矿尾矿改良技术,我们盆栽大白菜,确定不同石灰配肥量对离子稀土矿尾矿的改良效果,旨在为废弃离子稀土矿的资源化利用提供科学依据。结果表明:稀土尾矿土壤基质呈现出土壤酸化、土壤沙化、养分枯竭和稀土元素重金属污染4种退化形式。单独施肥(CK处理)对大白菜的生长没有促进作用,而不同量的石灰配肥对大白菜的生长有促进作用,并显著降低了稀土重金属的活性。随着石灰用量的增加,白菜植株的株高、鲜重和稀土含量均显著降低。石灰的添加不仅显著改善了土壤孔隙空间,减少了土壤酸化,而且显著提高了土壤养分含量。研究结果表明,石灰配施化肥可以改善离子稀土尾矿的土壤退化,从而促进植物生长,实现离子稀土尾矿的改良,无需土壤处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditioning with Lime and Fertilizer Improves Ionic Rare Earth Mine Tailings
To explore rare earth mine tailings improvement technology without soil dressing, we planted Chinese cabbage in pots to determine the effect of different amounts of lime combined with fertilizer on the improvement of ionic rare earth mine tailings, aiming to provide a scientific basis for the reclamation of abandoned ionic rare earth mines. The results showed that the soil substrate of the tested rare earth tailings exhibited four forms of degradation: soil acidification, soil desertification, nutrient depletion, and heavy metal contamination by rare earth elements (REEs). The application of fertilizer alone (CK treatment) did not support Chinese cabbage growth, whereas different amounts of lime combined with fertilizer supported plant growth and significantly reduced the activity of the rare earth heavy metals. The height, fresh weight, and REE content of the Chinese cabbage plants were significantly reduced with an increase in the amount of lime applied. Addition of lime not only significantly improved the soil pore space and reduced soil acidification but also significantly increased the soil nutrient content. Our findings suggest that lime combined with fertilizer can improve ionic rare earth mine tailing soil degradation, thus promoting plant growth and achieving the improvement of ionic rare earth mine tailings without soil dressing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
期刊最新文献
Partial Purification of Anthocyanins (Brassica oleracea var. Rubra) from Purple Cabbage Using Natural and Modified Clays as Adsorbent Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite Dual Role of Fe2+ in the Galena Flotation and Influence on Selective Separation Investigation of the Zeta Adsorption Model and Gas-Solid Adsorption Phase Transition Mechanism Using Statistical Mechanics at Gas-Solid Interfaces Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1