Gabriela T. Araujo, D. Gaudet, Eric Amundsen, M. Frick, R. Aboukhaddour, B. Selinger, A. Laroche
{"title":"小麦条锈病的接种阈值","authors":"Gabriela T. Araujo, D. Gaudet, Eric Amundsen, M. Frick, R. Aboukhaddour, B. Selinger, A. Laroche","doi":"10.1080/07060661.2023.2177888","DOIUrl":null,"url":null,"abstract":"Abstract Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) and powdery mildew (Blumeria graminis f. sp. tritici (Bgt)) are important diseases of wheat in Canada and worldwide. Molecular detection methods permit spore detection of few spores; therefore, there is a need to determine initial inoculum thresholds for pathogens to cause disease under both controlled environments and in the field. Susceptible wheat cultivars ‘Avocet’ and ‘AC Barrie’ were inoculated with different quantities of spores (0, 103, 104, 105, 106, and 107) of Pst and Bgt. Disease incidence, severity and infection type were evaluated. Results of controlled environment studies showed that the minimum number of spores necessary to cause appreciable incidence and severity for Pst was at higher spore concentrations of 105–106 spores. Conversely, low incidence and severity levels were observed at 103–104 spores for Bgt. Despite occurrence of natural Pst infection, results of field studies in 2016 and 2017 in Southern Alberta demonstrated that significant increases in severity levels were observed following application of 1.2 × 107 spores. Collectively, these results demonstrated that stripe rust severities increased with increasing spore concentration only at high spore levels. In contrast, Bgt severity increased with spore concentration from 103 to 107 spores mL−1. In vitro and in vivo spore germination tests demonstrated germination rates of Pst spores were reduced at lower spore concentrations compared to germination rates at the higher concentrations. Understanding of minimum spore numbers required for disease development will be a prerequisite for predicting epidemics and devising fungicide control measures for future sustainable agricultural systems.","PeriodicalId":9468,"journal":{"name":"Canadian Journal of Plant Pathology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inoculum threshold for stripe rust infection in wheat\",\"authors\":\"Gabriela T. Araujo, D. Gaudet, Eric Amundsen, M. Frick, R. Aboukhaddour, B. Selinger, A. Laroche\",\"doi\":\"10.1080/07060661.2023.2177888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) and powdery mildew (Blumeria graminis f. sp. tritici (Bgt)) are important diseases of wheat in Canada and worldwide. Molecular detection methods permit spore detection of few spores; therefore, there is a need to determine initial inoculum thresholds for pathogens to cause disease under both controlled environments and in the field. Susceptible wheat cultivars ‘Avocet’ and ‘AC Barrie’ were inoculated with different quantities of spores (0, 103, 104, 105, 106, and 107) of Pst and Bgt. Disease incidence, severity and infection type were evaluated. Results of controlled environment studies showed that the minimum number of spores necessary to cause appreciable incidence and severity for Pst was at higher spore concentrations of 105–106 spores. Conversely, low incidence and severity levels were observed at 103–104 spores for Bgt. Despite occurrence of natural Pst infection, results of field studies in 2016 and 2017 in Southern Alberta demonstrated that significant increases in severity levels were observed following application of 1.2 × 107 spores. Collectively, these results demonstrated that stripe rust severities increased with increasing spore concentration only at high spore levels. In contrast, Bgt severity increased with spore concentration from 103 to 107 spores mL−1. In vitro and in vivo spore germination tests demonstrated germination rates of Pst spores were reduced at lower spore concentrations compared to germination rates at the higher concentrations. Understanding of minimum spore numbers required for disease development will be a prerequisite for predicting epidemics and devising fungicide control measures for future sustainable agricultural systems.\",\"PeriodicalId\":9468,\"journal\":{\"name\":\"Canadian Journal of Plant Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/07060661.2023.2177888\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/07060661.2023.2177888","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Inoculum threshold for stripe rust infection in wheat
Abstract Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) and powdery mildew (Blumeria graminis f. sp. tritici (Bgt)) are important diseases of wheat in Canada and worldwide. Molecular detection methods permit spore detection of few spores; therefore, there is a need to determine initial inoculum thresholds for pathogens to cause disease under both controlled environments and in the field. Susceptible wheat cultivars ‘Avocet’ and ‘AC Barrie’ were inoculated with different quantities of spores (0, 103, 104, 105, 106, and 107) of Pst and Bgt. Disease incidence, severity and infection type were evaluated. Results of controlled environment studies showed that the minimum number of spores necessary to cause appreciable incidence and severity for Pst was at higher spore concentrations of 105–106 spores. Conversely, low incidence and severity levels were observed at 103–104 spores for Bgt. Despite occurrence of natural Pst infection, results of field studies in 2016 and 2017 in Southern Alberta demonstrated that significant increases in severity levels were observed following application of 1.2 × 107 spores. Collectively, these results demonstrated that stripe rust severities increased with increasing spore concentration only at high spore levels. In contrast, Bgt severity increased with spore concentration from 103 to 107 spores mL−1. In vitro and in vivo spore germination tests demonstrated germination rates of Pst spores were reduced at lower spore concentrations compared to germination rates at the higher concentrations. Understanding of minimum spore numbers required for disease development will be a prerequisite for predicting epidemics and devising fungicide control measures for future sustainable agricultural systems.
期刊介绍:
Canadian Journal of Plant Pathology is an international journal which publishes the results of scientific research and other information relevant to the discipline of plant pathology as review papers, research articles, notes and disease reports. Papers may be submitted in English or French and are subject to peer review. Research articles and notes include original research that contributes to the science of plant pathology or to the practice of plant pathology, including the diagnosis, estimation, prevention, and control of plant diseases. Notes are generally shorter in length and include more concise research results. Disease reports are brief, previously unpublished accounts of diseases occurring on a new host or geographic region. Review papers include mini-reviews, descriptions of emerging technologies, and full reviews on a topic of interest to readers, including symposium papers. These papers will be highlighted in each issue of the journal and require prior discussion with the Editor-in-Chief prior to submission.