B. Rakhadilov, Y. Tabiyeva, G. Uazyrkhanova, L. Zhurerova, D. Baizhan
{"title":"电解等离子体表面淬火对铁素体-珠光体类车轮钢组织和强度性能的影响","authors":"B. Rakhadilov, Y. Tabiyeva, G. Uazyrkhanova, L. Zhurerova, D. Baizhan","doi":"10.29317/ejpfm.2020040208","DOIUrl":null,"url":null,"abstract":"This paper examines the influence of electrolyte-plasma surface hardening on the structure and micro- hardness of wheel steel mark 2. In the work electrolyte-plasma surface quenching was carried out in an electrolyte made from an aqueous solution of 10% carbamide (NH 2 ) 2 CO + 20% sodium carbon- ate Na 2 CO 3 . The work investigated the strength limit, fluidity and wear intensity of the wheeled steel after electrolyte-plasma surface quenching. After electrolytic-plasma surface quenching, a batch, high-temperature plate and low-temperature plate martensit is formed on the surface of the sample. Investigations have been carried out on microhardness determination on cross-section of wheel steel samples after quenching in aqueous solution of electrolyte. It is found that after electrolytic-plasma surface quenching, the microhardening values of this hardened surface layer increased on ≈ 3 times compared to the steel matrix, and the thickness of the hardened layer is 1000-1500 µ m. According to the results of the scanning transmission electron microscopy, the electrolyte-plasma surface quenching caused a change in the morphological constituents of steel mark 2. In the initial state, the matrix of steel is a α -phase, the morphological components of which are fragmented unfragmented ferrite and pearlite.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of electrolytic-plasma surface quenching on the structure and strength properties of ferritic-pearlite class wheel steel\",\"authors\":\"B. Rakhadilov, Y. Tabiyeva, G. Uazyrkhanova, L. Zhurerova, D. Baizhan\",\"doi\":\"10.29317/ejpfm.2020040208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the influence of electrolyte-plasma surface hardening on the structure and micro- hardness of wheel steel mark 2. In the work electrolyte-plasma surface quenching was carried out in an electrolyte made from an aqueous solution of 10% carbamide (NH 2 ) 2 CO + 20% sodium carbon- ate Na 2 CO 3 . The work investigated the strength limit, fluidity and wear intensity of the wheeled steel after electrolyte-plasma surface quenching. After electrolytic-plasma surface quenching, a batch, high-temperature plate and low-temperature plate martensit is formed on the surface of the sample. Investigations have been carried out on microhardness determination on cross-section of wheel steel samples after quenching in aqueous solution of electrolyte. It is found that after electrolytic-plasma surface quenching, the microhardening values of this hardened surface layer increased on ≈ 3 times compared to the steel matrix, and the thickness of the hardened layer is 1000-1500 µ m. According to the results of the scanning transmission electron microscopy, the electrolyte-plasma surface quenching caused a change in the morphological constituents of steel mark 2. In the initial state, the matrix of steel is a α -phase, the morphological components of which are fragmented unfragmented ferrite and pearlite.\",\"PeriodicalId\":36047,\"journal\":{\"name\":\"Eurasian Journal of Physics and Functional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Physics and Functional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29317/ejpfm.2020040208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Physics and Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29317/ejpfm.2020040208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Influence of electrolytic-plasma surface quenching on the structure and strength properties of ferritic-pearlite class wheel steel
This paper examines the influence of electrolyte-plasma surface hardening on the structure and micro- hardness of wheel steel mark 2. In the work electrolyte-plasma surface quenching was carried out in an electrolyte made from an aqueous solution of 10% carbamide (NH 2 ) 2 CO + 20% sodium carbon- ate Na 2 CO 3 . The work investigated the strength limit, fluidity and wear intensity of the wheeled steel after electrolyte-plasma surface quenching. After electrolytic-plasma surface quenching, a batch, high-temperature plate and low-temperature plate martensit is formed on the surface of the sample. Investigations have been carried out on microhardness determination on cross-section of wheel steel samples after quenching in aqueous solution of electrolyte. It is found that after electrolytic-plasma surface quenching, the microhardening values of this hardened surface layer increased on ≈ 3 times compared to the steel matrix, and the thickness of the hardened layer is 1000-1500 µ m. According to the results of the scanning transmission electron microscopy, the electrolyte-plasma surface quenching caused a change in the morphological constituents of steel mark 2. In the initial state, the matrix of steel is a α -phase, the morphological components of which are fragmented unfragmented ferrite and pearlite.