计算再现性:数据策展器的实用框架

Sandra L. Sawchuk, Shahira Khair
{"title":"计算再现性:数据策展器的实用框架","authors":"Sandra L. Sawchuk, Shahira Khair","doi":"10.7191/jeslib.2021.1206","DOIUrl":null,"url":null,"abstract":"Introduction: This paper presents concrete and actionable steps to guide researchers, data curators, and data managers in improving their understanding and practice of computational reproducibility.\n\nObjectives: Focusing on incremental progress rather than prescriptive rules, researchers and curators can build their knowledge and skills as the need arises. This paper presents a framework of incremental curation for reproducibility to support open science objectives.\n\nMethods: A computational reproducibility framework developed for the Canadian Data Curation Forum serves as the model for this approach. This framework combines learning about reproducibility with recommended steps to improving reproducibility.\n\nConclusion: Computational reproducibility leads to more transparent and accurate research. The authors warn that fear of a crisis and focus on perfection should not prevent curation that may be ‘good enough.’","PeriodicalId":90214,"journal":{"name":"Journal of escience librarianship","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Reproducibility: A Practical Framework for Data Curators\",\"authors\":\"Sandra L. Sawchuk, Shahira Khair\",\"doi\":\"10.7191/jeslib.2021.1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This paper presents concrete and actionable steps to guide researchers, data curators, and data managers in improving their understanding and practice of computational reproducibility.\\n\\nObjectives: Focusing on incremental progress rather than prescriptive rules, researchers and curators can build their knowledge and skills as the need arises. This paper presents a framework of incremental curation for reproducibility to support open science objectives.\\n\\nMethods: A computational reproducibility framework developed for the Canadian Data Curation Forum serves as the model for this approach. This framework combines learning about reproducibility with recommended steps to improving reproducibility.\\n\\nConclusion: Computational reproducibility leads to more transparent and accurate research. The authors warn that fear of a crisis and focus on perfection should not prevent curation that may be ‘good enough.’\",\"PeriodicalId\":90214,\"journal\":{\"name\":\"Journal of escience librarianship\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of escience librarianship\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7191/jeslib.2021.1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of escience librarianship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7191/jeslib.2021.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

引言:本文提出了具体可行的步骤,以指导研究人员、数据管理者和数据管理者提高他们对计算再现性的理解和实践。目标:研究人员和策展人可以根据需要建立自己的知识和技能,专注于渐进式的进步,而不是规定性的规则。本文提出了一个可再现性的增量策展框架,以支持开放科学目标。方法:为加拿大数据整理论坛开发的计算再现性框架作为该方法的模型。该框架将对再现性的学习与提高再现性的推荐步骤相结合。结论:计算再现性使研究更加透明和准确。作者警告说,对危机的恐惧和对完美的关注不应阻止可能“足够好”的策展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Reproducibility: A Practical Framework for Data Curators
Introduction: This paper presents concrete and actionable steps to guide researchers, data curators, and data managers in improving their understanding and practice of computational reproducibility. Objectives: Focusing on incremental progress rather than prescriptive rules, researchers and curators can build their knowledge and skills as the need arises. This paper presents a framework of incremental curation for reproducibility to support open science objectives. Methods: A computational reproducibility framework developed for the Canadian Data Curation Forum serves as the model for this approach. This framework combines learning about reproducibility with recommended steps to improving reproducibility. Conclusion: Computational reproducibility leads to more transparent and accurate research. The authors warn that fear of a crisis and focus on perfection should not prevent curation that may be ‘good enough.’
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Ethical considerations in utilizing artificial intelligence for analyzing the NHGRI's History of Genomics and Human Genome Project archives. The Creative Urge Title Pending 740 A Problem Shared Is a Community Created: Recommendations for Cross-Institutional Collaborations. Train the Teacher: Practical guidance for effective, critical teaching approaches for science and data librarians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1