一类新的二十阶收敛方法及其在工程非线性系统中的应用

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Mehran University Research Journal of Engineering and Technology Pub Date : 2023-01-01 DOI:10.22581/muet1982.2301.15
H. Abro, M. M. Shaikh
{"title":"一类新的二十阶收敛方法及其在工程非线性系统中的应用","authors":"H. Abro, M. M. Shaikh","doi":"10.22581/muet1982.2301.15","DOIUrl":null,"url":null,"abstract":"A new family of iterative methods with a strong converging order of twenty to solve nonlinear equations and systems is presented in this study. A simple strategy of blending some existing methods is used to develop the proposed family. The theoretical order of convergence is derived by employing Taylor’s series. The performance of the iterative methods in the proposed family is examined by applying the methods on real-world engineering problems. A nonlinear equation modeled by NASA for launching “Wind” satellite and some other complex applied systems, such as combustion problem, tank-reactor problem, kinematic synthesis mechanism, neurophysiology application and one boundary-value problem, have been solved to check the performance of the proposed family against other methods under similar test conditions. All the numerical results show that the proposed family converges very fast in complex and difficult problems as compared to other well-known methods. The methods in the proposed family have an efficiency improvement of 11.99% over the classical Newton method for scalar nonlinear equations.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new family of twentieth order convergent methods with applications to nonlinear systems in engineering\",\"authors\":\"H. Abro, M. M. Shaikh\",\"doi\":\"10.22581/muet1982.2301.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new family of iterative methods with a strong converging order of twenty to solve nonlinear equations and systems is presented in this study. A simple strategy of blending some existing methods is used to develop the proposed family. The theoretical order of convergence is derived by employing Taylor’s series. The performance of the iterative methods in the proposed family is examined by applying the methods on real-world engineering problems. A nonlinear equation modeled by NASA for launching “Wind” satellite and some other complex applied systems, such as combustion problem, tank-reactor problem, kinematic synthesis mechanism, neurophysiology application and one boundary-value problem, have been solved to check the performance of the proposed family against other methods under similar test conditions. All the numerical results show that the proposed family converges very fast in complex and difficult problems as compared to other well-known methods. The methods in the proposed family have an efficiency improvement of 11.99% over the classical Newton method for scalar nonlinear equations.\",\"PeriodicalId\":44836,\"journal\":{\"name\":\"Mehran University Research Journal of Engineering and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mehran University Research Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/muet1982.2301.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2301.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一类求解非线性方程和系统的强收敛阶迭代方法。一个简单的策略是混合一些现有的方法来开发所提出的家族。理论的收敛阶是用泰勒级数推导出来的。通过将所提出的迭代方法应用于实际工程问题,检验了所提出的迭代方法的性能。求解了NASA为“风”号卫星发射和其他一些复杂应用系统(如燃烧问题、罐堆问题、运动综合机构、神经生理学应用和一个边值问题)建模的非线性方程,并与其他方法在类似测试条件下的性能进行了比较。所有的数值结果表明,与其他已知的方法相比,该族在复杂和困难的问题上收敛速度非常快。本文提出的方法比经典牛顿法求解标量非线性方程的效率提高了11.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new family of twentieth order convergent methods with applications to nonlinear systems in engineering
A new family of iterative methods with a strong converging order of twenty to solve nonlinear equations and systems is presented in this study. A simple strategy of blending some existing methods is used to develop the proposed family. The theoretical order of convergence is derived by employing Taylor’s series. The performance of the iterative methods in the proposed family is examined by applying the methods on real-world engineering problems. A nonlinear equation modeled by NASA for launching “Wind” satellite and some other complex applied systems, such as combustion problem, tank-reactor problem, kinematic synthesis mechanism, neurophysiology application and one boundary-value problem, have been solved to check the performance of the proposed family against other methods under similar test conditions. All the numerical results show that the proposed family converges very fast in complex and difficult problems as compared to other well-known methods. The methods in the proposed family have an efficiency improvement of 11.99% over the classical Newton method for scalar nonlinear equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
76
审稿时长
40 weeks
期刊最新文献
Heat transfer augmentation through engine oil-based hybrid nanofluid inside a trapezoid cavity Sustainable natural dyeing of cellulose with agricultural medicinal plant waste, new shades development with nontoxic sustainable elements Fabrication of low-cost and environmental-friendly EHD printable thin film nanocomposite triboelectric nanogenerator using household recyclable materials Compositional analysis of dark colored particulates homogeneously emitted with combustion gases (dark plumes) from brick making kilns situated in the area of Khyber Pakhtunkhwa, Pakistan Biosorption studies on arsenic (III) removal from industrial wastewater by using fixed and fluidized bed operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1