基于5G mec的电力机器人巡检智能计算卸载

IF 10.9 1区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Wireless Communications Pub Date : 2023-04-01 DOI:10.1109/MWC.003.2200350
Wei Wang, Rui Qu, Haijun Liao, Zhao Wang, Zhenyu Zhou, Zhongyuan Wang, S. Mumtaz, M. Guizani
{"title":"基于5G mec的电力机器人巡检智能计算卸载","authors":"Wei Wang, Rui Qu, Haijun Liao, Zhao Wang, Zhenyu Zhou, Zhongyuan Wang, S. Mumtaz, M. Guizani","doi":"10.1109/MWC.003.2200350","DOIUrl":null,"url":null,"abstract":"Power robotic inspection plays a critical role in the realization of real-time visualization and perception of substation in power grid. 5G mobile edge computing (MEC) has emerged as a promising solution to provide the large bandwidth, wide connectivity, and proximate computing capabilities for the computation offloading of power robotic inspection with stringent delay requirements. This article proposes a 5G MEC-based intelligent computation offloading framework in power robotic inspection to cope with multi-dimension entity heterogeneity, environment dynamics, and inspection delay guarantee. Specifically, the proposed framework and the implementation procedures of computation offloading are firstly elaborated, and the research challenges are outlined. Then, we propose an artificial intelligence (AI)-enabled multi-dimension collaborative optimization algorithm of route planning and task offloading to address the low-latency computation offloading problem under queue stability constraint. A case study is provided to verify the superiority of delay and queue backlog performance through simulation results.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"66-74"},"PeriodicalIF":10.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"5G MEC-Based Intelligent Computation Offloading in Power Robotic Inspection\",\"authors\":\"Wei Wang, Rui Qu, Haijun Liao, Zhao Wang, Zhenyu Zhou, Zhongyuan Wang, S. Mumtaz, M. Guizani\",\"doi\":\"10.1109/MWC.003.2200350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power robotic inspection plays a critical role in the realization of real-time visualization and perception of substation in power grid. 5G mobile edge computing (MEC) has emerged as a promising solution to provide the large bandwidth, wide connectivity, and proximate computing capabilities for the computation offloading of power robotic inspection with stringent delay requirements. This article proposes a 5G MEC-based intelligent computation offloading framework in power robotic inspection to cope with multi-dimension entity heterogeneity, environment dynamics, and inspection delay guarantee. Specifically, the proposed framework and the implementation procedures of computation offloading are firstly elaborated, and the research challenges are outlined. Then, we propose an artificial intelligence (AI)-enabled multi-dimension collaborative optimization algorithm of route planning and task offloading to address the low-latency computation offloading problem under queue stability constraint. A case study is provided to verify the superiority of delay and queue backlog performance through simulation results.\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"30 1\",\"pages\":\"66-74\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MWC.003.2200350\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.003.2200350","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

电力机器人巡检是实现电网变电站实时可视化和感知的关键。5G移动边缘计算(MEC)已经成为一种有前途的解决方案,可以为具有严格延迟要求的电力机器人检查的计算卸载提供大带宽、宽连接和近似计算能力。本文提出了一种基于5G mec的电力机器人巡检智能计算卸载框架,以应对多维实体异质性、环境动态性和巡检延迟保证。具体而言,首先阐述了提出的计算卸载框架和实现步骤,并概述了研究面临的挑战。然后,针对队列稳定性约束下的低延迟计算卸载问题,提出了一种基于人工智能(AI)的多维协同优化算法。通过仿真结果验证了延迟和队列积压性能的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G MEC-Based Intelligent Computation Offloading in Power Robotic Inspection
Power robotic inspection plays a critical role in the realization of real-time visualization and perception of substation in power grid. 5G mobile edge computing (MEC) has emerged as a promising solution to provide the large bandwidth, wide connectivity, and proximate computing capabilities for the computation offloading of power robotic inspection with stringent delay requirements. This article proposes a 5G MEC-based intelligent computation offloading framework in power robotic inspection to cope with multi-dimension entity heterogeneity, environment dynamics, and inspection delay guarantee. Specifically, the proposed framework and the implementation procedures of computation offloading are firstly elaborated, and the research challenges are outlined. Then, we propose an artificial intelligence (AI)-enabled multi-dimension collaborative optimization algorithm of route planning and task offloading to address the low-latency computation offloading problem under queue stability constraint. A case study is provided to verify the superiority of delay and queue backlog performance through simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications
IEEE Wireless Communications 工程技术-电信学
CiteScore
24.20
自引率
1.60%
发文量
183
审稿时长
6-12 weeks
期刊介绍: IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services. Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.
期刊最新文献
Federated Large Language Model: Solutions, Challenges and Future Directions Integrated Communication, Navigation, and Remote Sensing in LEO Networks with Vehicular Applications Cooperative ISAC Networks: Opportunities and Challenges Space-Air-Ground Integrated Networks with Task-Driven Connected Intelligence DRL Enhanced Reconfigurable Intelligent Surface for Efficient Air-Ground Vehicle Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1