随机偏微分方程温和解的对偶Yamada-Watanabe定理

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2020-06-22 DOI:10.1090/tpms/1155
Stefan Tappe
{"title":"随机偏微分方程温和解的对偶Yamada-Watanabe定理","authors":"Stefan Tappe","doi":"10.1090/tpms/1155","DOIUrl":null,"url":null,"abstract":"We provide the dual result of the Yamada–Watanabe theorem for mild solutions to semilinear stochastic partial differential equations with path-dependent coefficients. An essential tool is the so-called “method of the moving frame”, which allows us to reduce the proof to infinite dimensional stochastic differential equations.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The dual Yamada–Watanabe theorem for mild solutions to stochastic partial differential equations\",\"authors\":\"Stefan Tappe\",\"doi\":\"10.1090/tpms/1155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the dual result of the Yamada–Watanabe theorem for mild solutions to semilinear stochastic partial differential equations with path-dependent coefficients. An essential tool is the so-called “method of the moving frame”, which allows us to reduce the proof to infinite dimensional stochastic differential equations.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

我们给出了具有路径相关系数的半线性随机偏微分方程的温和解的Yamada–Watanabe定理的对偶结果。一个重要的工具是所谓的“移动框架方法”,它使我们能够将证明简化为无穷维随机微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The dual Yamada–Watanabe theorem for mild solutions to stochastic partial differential equations
We provide the dual result of the Yamada–Watanabe theorem for mild solutions to semilinear stochastic partial differential equations with path-dependent coefficients. An essential tool is the so-called “method of the moving frame”, which allows us to reduce the proof to infinite dimensional stochastic differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1