将测高信息纳入改进的斜坡地形反演光测斜方法

Q4 Physics and Astronomy Radio Physics and Radio Astronomy Pub Date : 2021-06-23 DOI:10.15407/rpra26.02.173
Y. Kornienko, I. A. Dulova, N. V. Bondarenko
{"title":"将测高信息纳入改进的斜坡地形反演光测斜方法","authors":"Y. Kornienko, I. A. Dulova, N. V. Bondarenko","doi":"10.15407/rpra26.02.173","DOIUrl":null,"url":null,"abstract":"Purpose: The paper discusses the possibility for increasing the planet’s surface relief retrieving accuracy with the improved photoclinometry method through the reference of the desired relief to the altimetry data. The general approach to solving the problem is proposed. The use of altimeters having both wide and narrow beam patterns are discussed, but the narrow beam pattern altimeter data is studied more in detail. The spatial resolution of the retrieved relief calculated with the improved photoclinometry method conforms to the one of the source images. Altimetry allows absolute reference to the surface heights and improves the accuracy of the relief determination. Design/metodology/approach: The work is based on the improved photoclinometry method for the planet’s surface relief retrieving from images. This method is mathematically rigorous and uses the Bayesian statistical approach, that allows calculation of the most probable relief according to available observations. Findings: An approach to determining the optimal statistical estimate of the surface heights from images in the frames of the improved photoclinometry method is proposed and an expression for the optimal filter which converts source images along with the wide beam pattern altimetry data into the most probable relief of the planet surface area is presented. The reference technique for the narrow beam pattern altimeter data is formulated. The efficiency of the method has been verified with the computer simulation. The relief of the surface area in Mare Imbrium on the Moon was retrieved using three images and laser altimeter data taken by the “Lunar Reconnaissance Orbiter” spacecraft. Conclusions: Accounting for the narrow beam pattern altimeter data increases the accuracy of the relief determination. Using the narrow beam pattern altimeter data turns out to be more preferable over the involving wide beam pattern altimeter data. Computer simulation has shown that accounting for the narrow beam pattern altimeter data significantly increases the accuracy of the calculated heights as against using images exclusively and helps to speed up the calculation procedure. Key words: planet surface relief; photometry; altimetry; optimal filtering; statistical estimation of random value","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVOLVEMENT OF ALTIMETRY INFORMATION INTO THE IMPROVED PHOTOCLINOMETRY METHOD FOR RELIEF RETRIEVAL FROM A SLOPE FIELD\",\"authors\":\"Y. Kornienko, I. A. Dulova, N. V. Bondarenko\",\"doi\":\"10.15407/rpra26.02.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: The paper discusses the possibility for increasing the planet’s surface relief retrieving accuracy with the improved photoclinometry method through the reference of the desired relief to the altimetry data. The general approach to solving the problem is proposed. The use of altimeters having both wide and narrow beam patterns are discussed, but the narrow beam pattern altimeter data is studied more in detail. The spatial resolution of the retrieved relief calculated with the improved photoclinometry method conforms to the one of the source images. Altimetry allows absolute reference to the surface heights and improves the accuracy of the relief determination. Design/metodology/approach: The work is based on the improved photoclinometry method for the planet’s surface relief retrieving from images. This method is mathematically rigorous and uses the Bayesian statistical approach, that allows calculation of the most probable relief according to available observations. Findings: An approach to determining the optimal statistical estimate of the surface heights from images in the frames of the improved photoclinometry method is proposed and an expression for the optimal filter which converts source images along with the wide beam pattern altimetry data into the most probable relief of the planet surface area is presented. The reference technique for the narrow beam pattern altimeter data is formulated. The efficiency of the method has been verified with the computer simulation. The relief of the surface area in Mare Imbrium on the Moon was retrieved using three images and laser altimeter data taken by the “Lunar Reconnaissance Orbiter” spacecraft. Conclusions: Accounting for the narrow beam pattern altimeter data increases the accuracy of the relief determination. Using the narrow beam pattern altimeter data turns out to be more preferable over the involving wide beam pattern altimeter data. Computer simulation has shown that accounting for the narrow beam pattern altimeter data significantly increases the accuracy of the calculated heights as against using images exclusively and helps to speed up the calculation procedure. Key words: planet surface relief; photometry; altimetry; optimal filtering; statistical estimation of random value\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra26.02.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra26.02.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过对测高数据的参考,讨论了利用改进的光测斜方法提高行星表面起伏反演精度的可能性。提出了解决这个问题的一般方法。讨论了具有宽波束和窄波束模式的高度计的使用,但对窄波束模式高度计数据进行了更详细的研究。用改进的光测斜法计算的反演起伏的空间分辨率与源图像的空间分辨率一致。测高允许绝对参考表面高度,并提高起伏测定的准确性。设计/气象/方法:这项工作基于改进的光测斜方法,用于从图像中检索行星的表面起伏。该方法在数学上是严格的,并使用贝叶斯统计方法,允许根据可用的观测结果计算最可能的起伏。研究结果:提出了一种从改进的光测斜法框架中的图像中确定表面高度的最佳统计估计的方法,并给出了最佳滤波器的表达式,该表达式将源图像和宽波束模式测高数据转换为行星表面积的最可能起伏。提出了窄波束模式高度计数据的参考技术。通过计算机仿真验证了该方法的有效性。利用“月球勘测轨道飞行器”航天器拍摄的三张图像和激光高度计数据,检索到了月球上因布里姆海表面的地形。结论:考虑到窄波束模式高度计数据,提高了地形起伏确定的准确性。使用窄波束模式高度计数据比使用宽波束模式高测计数据更可取。计算机模拟表明,与仅使用图像相比,考虑窄波束模式高度计数据显著提高了计算高度的准确性,并有助于加快计算过程。关键词:行星表面起伏;光度测定;测高;最优滤波;随机值的统计估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INVOLVEMENT OF ALTIMETRY INFORMATION INTO THE IMPROVED PHOTOCLINOMETRY METHOD FOR RELIEF RETRIEVAL FROM A SLOPE FIELD
Purpose: The paper discusses the possibility for increasing the planet’s surface relief retrieving accuracy with the improved photoclinometry method through the reference of the desired relief to the altimetry data. The general approach to solving the problem is proposed. The use of altimeters having both wide and narrow beam patterns are discussed, but the narrow beam pattern altimeter data is studied more in detail. The spatial resolution of the retrieved relief calculated with the improved photoclinometry method conforms to the one of the source images. Altimetry allows absolute reference to the surface heights and improves the accuracy of the relief determination. Design/metodology/approach: The work is based on the improved photoclinometry method for the planet’s surface relief retrieving from images. This method is mathematically rigorous and uses the Bayesian statistical approach, that allows calculation of the most probable relief according to available observations. Findings: An approach to determining the optimal statistical estimate of the surface heights from images in the frames of the improved photoclinometry method is proposed and an expression for the optimal filter which converts source images along with the wide beam pattern altimetry data into the most probable relief of the planet surface area is presented. The reference technique for the narrow beam pattern altimeter data is formulated. The efficiency of the method has been verified with the computer simulation. The relief of the surface area in Mare Imbrium on the Moon was retrieved using three images and laser altimeter data taken by the “Lunar Reconnaissance Orbiter” spacecraft. Conclusions: Accounting for the narrow beam pattern altimeter data increases the accuracy of the relief determination. Using the narrow beam pattern altimeter data turns out to be more preferable over the involving wide beam pattern altimeter data. Computer simulation has shown that accounting for the narrow beam pattern altimeter data significantly increases the accuracy of the calculated heights as against using images exclusively and helps to speed up the calculation procedure. Key words: planet surface relief; photometry; altimetry; optimal filtering; statistical estimation of random value
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
GROUND BASED SUPPORT OF THE SPACE MISSION PARKER PERFORMED WITH UKRAINIAN LOW FREQUENCY RADIO TELESCOPES FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES V. P. SHESTOPALOV AND HIS SCIENTIFIC SCHOOL: FROM QUASISTATICS TO QUASIOPTICS (to mark V.P.'s birth centenary) PROGRESS IN THE STUDY OF DECAMETER-WAVELENGTH SOLAR RADIO EMISSION WITH UKRAINIAN RADIO TELESCOPES. Part 1. (Invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1