E. Gatta, V. Bazzurro, E. Angeli, A. Salis, G. Damonte, A. Cupello, M. Robello, A. Diaspro
{"title":"RuBi GABA开盖副产物对小脑颗粒细胞GABAA受体影响的电生理研究","authors":"E. Gatta, V. Bazzurro, E. Angeli, A. Salis, G. Damonte, A. Cupello, M. Robello, A. Diaspro","doi":"10.1515/bmc-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract The study of the GABAA receptor itself and its pharmacology is of paramount importance for shedding light on the role of this receptor in the central nervous system. Caged compounds have emerged as powerful tools to support research in this field, as they allow to control, in space and time, the release of neurotransmitters enabling, for example, to map receptors’ distribution and dynamics. Here we focus on γ-aminobutyric acid (GABA)-caged compounds, particularly on a commercial complex called RuBi-GABA, which has high efficiency of uncaging upon irradiation at visible wavelengths. We characterized, by electrophysiological measurements, the effects of RuBi-GABA on GABAA receptors of rat cerebellar granule cells in vitro. In particular, we evaluated the effects of side products obtained after RuBi-GABA photolysis. For this purpose, we developed a procedure to separate the “RuBi-cage” from GABA after uncaging RuBi-GABA with a laser source; then, we compared electrophysiological measurements acquired with and without administering the RuBi-cage in the perfusing bath. In conclusion, to investigate the role of the “cage” molecules both near and far from the cell soma, we compared experiments performed changing the distance of the uncaging point from the cell.","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"13 1","pages":"289 - 297"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological study of the effects of side products of RuBi-GABA uncaging on GABAA receptors in cerebellar granule cells\",\"authors\":\"E. Gatta, V. Bazzurro, E. Angeli, A. Salis, G. Damonte, A. Cupello, M. Robello, A. Diaspro\",\"doi\":\"10.1515/bmc-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study of the GABAA receptor itself and its pharmacology is of paramount importance for shedding light on the role of this receptor in the central nervous system. Caged compounds have emerged as powerful tools to support research in this field, as they allow to control, in space and time, the release of neurotransmitters enabling, for example, to map receptors’ distribution and dynamics. Here we focus on γ-aminobutyric acid (GABA)-caged compounds, particularly on a commercial complex called RuBi-GABA, which has high efficiency of uncaging upon irradiation at visible wavelengths. We characterized, by electrophysiological measurements, the effects of RuBi-GABA on GABAA receptors of rat cerebellar granule cells in vitro. In particular, we evaluated the effects of side products obtained after RuBi-GABA photolysis. For this purpose, we developed a procedure to separate the “RuBi-cage” from GABA after uncaging RuBi-GABA with a laser source; then, we compared electrophysiological measurements acquired with and without administering the RuBi-cage in the perfusing bath. In conclusion, to investigate the role of the “cage” molecules both near and far from the cell soma, we compared experiments performed changing the distance of the uncaging point from the cell.\",\"PeriodicalId\":38392,\"journal\":{\"name\":\"Biomolecular Concepts\",\"volume\":\"13 1\",\"pages\":\"289 - 297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Concepts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmc-2022-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Electrophysiological study of the effects of side products of RuBi-GABA uncaging on GABAA receptors in cerebellar granule cells
Abstract The study of the GABAA receptor itself and its pharmacology is of paramount importance for shedding light on the role of this receptor in the central nervous system. Caged compounds have emerged as powerful tools to support research in this field, as they allow to control, in space and time, the release of neurotransmitters enabling, for example, to map receptors’ distribution and dynamics. Here we focus on γ-aminobutyric acid (GABA)-caged compounds, particularly on a commercial complex called RuBi-GABA, which has high efficiency of uncaging upon irradiation at visible wavelengths. We characterized, by electrophysiological measurements, the effects of RuBi-GABA on GABAA receptors of rat cerebellar granule cells in vitro. In particular, we evaluated the effects of side products obtained after RuBi-GABA photolysis. For this purpose, we developed a procedure to separate the “RuBi-cage” from GABA after uncaging RuBi-GABA with a laser source; then, we compared electrophysiological measurements acquired with and without administering the RuBi-cage in the perfusing bath. In conclusion, to investigate the role of the “cage” molecules both near and far from the cell soma, we compared experiments performed changing the distance of the uncaging point from the cell.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.