{"title":"基于改进GWO-BP神经网络的张浦剪纸图案感知评价","authors":"Daoling Chen, Pengpeng Cheng","doi":"10.1515/ijnsns-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract In order to understand consumers’ perceptual cognition of Zhangpu paper-cut patterns and grasp the innovative application direction. The four design elements of paper-cut patterns were extracted by morphological analysis, and representative perceptual vocabulary were selected using Kansei engineering theory and factor analysis, then the design elements and perceptual evaluation scores of representative words are used as the input and output data of the GWO-BP neural network, respectively, to establish an intelligent model that can predict consumers’ perceptual cognition of paper-cut patterns. To verify the superiority of the model, the predicted result of BP and FA-BP are compared with GWO-BP neural network. The results show that although the convergence speed of the GWO-BP model is slightly lower than that of the FA-BP model, its prediction accuracy is significantly better than other algorithms. Designers can use the model to quickly redesign the paper-cut pattern to better meet the aesthetic needs of modern consumers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perceptual evaluation for Zhangpu paper-cut patterns by using improved GWO-BP neural network\",\"authors\":\"Daoling Chen, Pengpeng Cheng\",\"doi\":\"10.1515/ijnsns-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to understand consumers’ perceptual cognition of Zhangpu paper-cut patterns and grasp the innovative application direction. The four design elements of paper-cut patterns were extracted by morphological analysis, and representative perceptual vocabulary were selected using Kansei engineering theory and factor analysis, then the design elements and perceptual evaluation scores of representative words are used as the input and output data of the GWO-BP neural network, respectively, to establish an intelligent model that can predict consumers’ perceptual cognition of paper-cut patterns. To verify the superiority of the model, the predicted result of BP and FA-BP are compared with GWO-BP neural network. The results show that although the convergence speed of the GWO-BP model is slightly lower than that of the FA-BP model, its prediction accuracy is significantly better than other algorithms. Designers can use the model to quickly redesign the paper-cut pattern to better meet the aesthetic needs of modern consumers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Perceptual evaluation for Zhangpu paper-cut patterns by using improved GWO-BP neural network
Abstract In order to understand consumers’ perceptual cognition of Zhangpu paper-cut patterns and grasp the innovative application direction. The four design elements of paper-cut patterns were extracted by morphological analysis, and representative perceptual vocabulary were selected using Kansei engineering theory and factor analysis, then the design elements and perceptual evaluation scores of representative words are used as the input and output data of the GWO-BP neural network, respectively, to establish an intelligent model that can predict consumers’ perceptual cognition of paper-cut patterns. To verify the superiority of the model, the predicted result of BP and FA-BP are compared with GWO-BP neural network. The results show that although the convergence speed of the GWO-BP model is slightly lower than that of the FA-BP model, its prediction accuracy is significantly better than other algorithms. Designers can use the model to quickly redesign the paper-cut pattern to better meet the aesthetic needs of modern consumers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.