用傅立叶变换红外光谱、拉曼光谱和DFT技术研究丹酮和大黄素的分子结构和光谱

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Lithuanian Journal of Physics Pub Date : 2021-04-12 DOI:10.3952/PHYSICS.V61I1.4403
B. K. Barik, H. M. Mallya, Rajeev Kumar Sinha, S. Chidangil
{"title":"用傅立叶变换红外光谱、拉曼光谱和DFT技术研究丹酮和大黄素的分子结构和光谱","authors":"B. K. Barik, H. M. Mallya, Rajeev Kumar Sinha, S. Chidangil","doi":"10.3952/PHYSICS.V61I1.4403","DOIUrl":null,"url":null,"abstract":"In this work, experimental and theoretical studies on danthron and emodin are presented. Experimentally, Fourier transform infrared (FTIR), Raman and UV–Vis spectra of danthron and emodin were recorded. The structure and vibrational frequencies of the molecules were calculated using density functional theory (DFT) with the B3LYP functional using the triple zeta (TZVP) basis set. Among various possible structures of danthron and emodin, it was found that the most stable structures involve intramolecular hydrogen bonds between two OH and C=O groups. The theoretical IR spectra of the most stable conformations of danthron and emodin correlate well with their experimental FTIR. Detailed vibrational frequency analysis was done for all the vibrational modes obtained and were assigned to the ring vibrations along with the stretching and bending of specific bond vibrations. The bands obtained from the experimental FTIR and Raman spectra of both the molecules correlate well with their theoretical data.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular structure and spectra of danthron and emodin studied by FTIR, Raman spectroscopy and DFT techniques\",\"authors\":\"B. K. Barik, H. M. Mallya, Rajeev Kumar Sinha, S. Chidangil\",\"doi\":\"10.3952/PHYSICS.V61I1.4403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, experimental and theoretical studies on danthron and emodin are presented. Experimentally, Fourier transform infrared (FTIR), Raman and UV–Vis spectra of danthron and emodin were recorded. The structure and vibrational frequencies of the molecules were calculated using density functional theory (DFT) with the B3LYP functional using the triple zeta (TZVP) basis set. Among various possible structures of danthron and emodin, it was found that the most stable structures involve intramolecular hydrogen bonds between two OH and C=O groups. The theoretical IR spectra of the most stable conformations of danthron and emodin correlate well with their experimental FTIR. Detailed vibrational frequency analysis was done for all the vibrational modes obtained and were assigned to the ring vibrations along with the stretching and bending of specific bond vibrations. The bands obtained from the experimental FTIR and Raman spectra of both the molecules correlate well with their theoretical data.\",\"PeriodicalId\":18144,\"journal\":{\"name\":\"Lithuanian Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3952/PHYSICS.V61I1.4403\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/PHYSICS.V61I1.4403","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对丹特龙和大黄素进行了实验和理论研究。实验记录了丹特龙和大黄素的傅立叶变换红外光谱、拉曼光谱和紫外-可见光谱。使用密度泛函理论(DFT)和B3LYP泛函,使用三ζ(TZVP)基组计算分子的结构和振动频率。在丹特龙和大黄素的各种可能结构中,发现最稳定的结构涉及两个OH和C=O基团之间的分子内氢键。丹特龙和大黄素最稳定构象的理论红外光谱与它们的实验FTIR很好地相关。对获得的所有振动模式进行了详细的振动频率分析,并将其与特定键振动的拉伸和弯曲一起分配给环振动。从两种分子的实验FTIR和拉曼光谱获得的谱带与它们的理论数据很好地相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular structure and spectra of danthron and emodin studied by FTIR, Raman spectroscopy and DFT techniques
In this work, experimental and theoretical studies on danthron and emodin are presented. Experimentally, Fourier transform infrared (FTIR), Raman and UV–Vis spectra of danthron and emodin were recorded. The structure and vibrational frequencies of the molecules were calculated using density functional theory (DFT) with the B3LYP functional using the triple zeta (TZVP) basis set. Among various possible structures of danthron and emodin, it was found that the most stable structures involve intramolecular hydrogen bonds between two OH and C=O groups. The theoretical IR spectra of the most stable conformations of danthron and emodin correlate well with their experimental FTIR. Detailed vibrational frequency analysis was done for all the vibrational modes obtained and were assigned to the ring vibrations along with the stretching and bending of specific bond vibrations. The bands obtained from the experimental FTIR and Raman spectra of both the molecules correlate well with their theoretical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lithuanian Journal of Physics
Lithuanian Journal of Physics 物理-物理:综合
CiteScore
0.90
自引率
16.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.
期刊最新文献
Effects of parabolic barrier design for multiple GaAsBi/AlGaAs quantum well structures THz properties of grating-gate plasmonic crystals crystals Superstrate-lens integration using paraffin wax on top of semiconductor-based THz detector chips Two-dimensional hydrodynamic modelling of AlGaN/GaN transistor-based THz detectors On nonparaxial single-pixel imaging of semitransparent objects using flat diffractive optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1