Vinicius Diniz, Gabriela M. Reyes, Susanne Rath, Davi G. F. Cunha
{"title":"咖啡因降低阿苯达唑和卡马西平对微藻的毒性","authors":"Vinicius Diniz, Gabriela M. Reyes, Susanne Rath, Davi G. F. Cunha","doi":"10.1002/iroh.201902024","DOIUrl":null,"url":null,"abstract":"<p>Pharmaceutically active compounds (PhACs) are emerging contaminants that have been widely detected in water bodies in the last decades, with ecological effects toward aquatic biota that have not been fully elucidated. Most studies concerning their toxicity to microalgae have only considered short-term individual PhAC exposure, rather than combined exposure to several compounds for longer time periods. In this study, we investigated the effects of albendazole (ABZ) (anthelmintic) and carbamazepine (antiepileptic), alone and in combination with caffeine, on the growth and production of chlorophyll-a of the microalgae <i>Raphidocelis subcapitata</i>, during 16 days of exposure. ABZ alone had a more significant effect than carbamazepine alone on the growth rate and maximum cell density of the microalgae (<i>p</i> < .05; analysis of variance). These results were probably related to the effect of ABZ in inhibiting enzyme complexes and cell membrane proteins related to adenosine triphosphate synthesis, which is important for cell growth. The presence of caffeine lowered the toxicities of ABZ and carbamazepine to the microalgae, probably due to its antioxidant properties, positively affecting chlorophyll-a production, growth rate, and maximum cell density. Thus, caffeine had an antagonistic interaction with the studied PhACs. The results reinforce the importance of ecotoxicological assays that compare individual and combined PhAC exposure conditions. Our findings highlighted that caffeine can be a relevant factor influencing such assays, considering its widespread occurrence in impacted water bodies.</p>","PeriodicalId":54928,"journal":{"name":"International Review of Hydrobiology","volume":"105 5-6","pages":"151-161"},"PeriodicalIF":0.9000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/iroh.201902024","citationCount":"5","resultStr":"{\"title\":\"Caffeine reduces the toxicity of albendazole and carbamazepine to the microalgae Raphidocelis subcapitata (Sphaeropleales, Chlorophyta)\",\"authors\":\"Vinicius Diniz, Gabriela M. Reyes, Susanne Rath, Davi G. F. Cunha\",\"doi\":\"10.1002/iroh.201902024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pharmaceutically active compounds (PhACs) are emerging contaminants that have been widely detected in water bodies in the last decades, with ecological effects toward aquatic biota that have not been fully elucidated. Most studies concerning their toxicity to microalgae have only considered short-term individual PhAC exposure, rather than combined exposure to several compounds for longer time periods. In this study, we investigated the effects of albendazole (ABZ) (anthelmintic) and carbamazepine (antiepileptic), alone and in combination with caffeine, on the growth and production of chlorophyll-a of the microalgae <i>Raphidocelis subcapitata</i>, during 16 days of exposure. ABZ alone had a more significant effect than carbamazepine alone on the growth rate and maximum cell density of the microalgae (<i>p</i> < .05; analysis of variance). These results were probably related to the effect of ABZ in inhibiting enzyme complexes and cell membrane proteins related to adenosine triphosphate synthesis, which is important for cell growth. The presence of caffeine lowered the toxicities of ABZ and carbamazepine to the microalgae, probably due to its antioxidant properties, positively affecting chlorophyll-a production, growth rate, and maximum cell density. Thus, caffeine had an antagonistic interaction with the studied PhACs. The results reinforce the importance of ecotoxicological assays that compare individual and combined PhAC exposure conditions. Our findings highlighted that caffeine can be a relevant factor influencing such assays, considering its widespread occurrence in impacted water bodies.</p>\",\"PeriodicalId\":54928,\"journal\":{\"name\":\"International Review of Hydrobiology\",\"volume\":\"105 5-6\",\"pages\":\"151-161\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/iroh.201902024\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Hydrobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iroh.201902024\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Hydrobiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iroh.201902024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Caffeine reduces the toxicity of albendazole and carbamazepine to the microalgae Raphidocelis subcapitata (Sphaeropleales, Chlorophyta)
Pharmaceutically active compounds (PhACs) are emerging contaminants that have been widely detected in water bodies in the last decades, with ecological effects toward aquatic biota that have not been fully elucidated. Most studies concerning their toxicity to microalgae have only considered short-term individual PhAC exposure, rather than combined exposure to several compounds for longer time periods. In this study, we investigated the effects of albendazole (ABZ) (anthelmintic) and carbamazepine (antiepileptic), alone and in combination with caffeine, on the growth and production of chlorophyll-a of the microalgae Raphidocelis subcapitata, during 16 days of exposure. ABZ alone had a more significant effect than carbamazepine alone on the growth rate and maximum cell density of the microalgae (p < .05; analysis of variance). These results were probably related to the effect of ABZ in inhibiting enzyme complexes and cell membrane proteins related to adenosine triphosphate synthesis, which is important for cell growth. The presence of caffeine lowered the toxicities of ABZ and carbamazepine to the microalgae, probably due to its antioxidant properties, positively affecting chlorophyll-a production, growth rate, and maximum cell density. Thus, caffeine had an antagonistic interaction with the studied PhACs. The results reinforce the importance of ecotoxicological assays that compare individual and combined PhAC exposure conditions. Our findings highlighted that caffeine can be a relevant factor influencing such assays, considering its widespread occurrence in impacted water bodies.
期刊介绍:
As human populations grow across the planet, water security, biodiversity loss and the loss of aquatic ecosystem services take on ever increasing priority for policy makers. International Review of Hydrobiology brings together in one forum fundamental and problem-oriented research on the challenges facing marine and freshwater biology in an economically changing world. Interdisciplinary in nature, articles cover all aspects of aquatic ecosystems, ranging from headwater streams to the ocean and biodiversity studies to ecosystem functioning, modeling approaches including GIS and resource management, with special emphasis on the link between marine and freshwater environments. The editors expressly welcome research on baseline data. The knowledge-driven papers will interest researchers, while the problem-driven articles will be of particular interest to policy makers. The overarching aim of the journal is to translate science into policy, allowing us to understand global systems yet act on a regional scale.
International Review of Hydrobiology publishes original articles, reviews, short communications, and methods papers.