道路事故模式挖掘器(RAP挖掘器)

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information and Telecommunication Pub Date : 2021-08-17 DOI:10.1080/24751839.2021.1955533
S. M. N. Arosha Senanayake, Sisir Joshi
{"title":"道路事故模式挖掘器(RAP挖掘器)","authors":"S. M. N. Arosha Senanayake, Sisir Joshi","doi":"10.1080/24751839.2021.1955533","DOIUrl":null,"url":null,"abstract":"ABSTRACT Domain-specific data service models can retrieve critical features from frequently occurring road accident patterns (RAPs). The aim of this research is to propose scan efficient association rules’ mining-based pattern analysis which provides more accurate RAP prediction in frequent accident locations with the fastest matching pattern search from a RAP database (RAP DB). Association rules’ mining technique derives a correlation between frequent RAP and association among various attributes of a road accident. While the clustering technique discriminates different RAPs, Naïve Bayes Classification classifies and then predicts the severity of accident using Fuzzy Inference Engine (FIE) interfaced with RAP Case Library (RAP CL) using hybrid intelligence. The results of the proposed road accident data service model prove a significant increase in the accuracy of accident prediction compared to the reported results. A novel hybrid learning algorithm, interfaced with Scan Efficient Apriori (SEA) algorithm implemented, leads the fast RAP search from the first scan through RAP CL and retain new RAP in the RAP CL using case-based reasoning (CBR) during subsequent scanning. Thus, the RAP miner built proves road accident prediction using SEA, FIE and CBR with the highest accuracy and fast RAP set processing.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"5 1","pages":"484 - 498"},"PeriodicalIF":2.7000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A road accident pattern miner (RAP miner)\",\"authors\":\"S. M. N. Arosha Senanayake, Sisir Joshi\",\"doi\":\"10.1080/24751839.2021.1955533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Domain-specific data service models can retrieve critical features from frequently occurring road accident patterns (RAPs). The aim of this research is to propose scan efficient association rules’ mining-based pattern analysis which provides more accurate RAP prediction in frequent accident locations with the fastest matching pattern search from a RAP database (RAP DB). Association rules’ mining technique derives a correlation between frequent RAP and association among various attributes of a road accident. While the clustering technique discriminates different RAPs, Naïve Bayes Classification classifies and then predicts the severity of accident using Fuzzy Inference Engine (FIE) interfaced with RAP Case Library (RAP CL) using hybrid intelligence. The results of the proposed road accident data service model prove a significant increase in the accuracy of accident prediction compared to the reported results. A novel hybrid learning algorithm, interfaced with Scan Efficient Apriori (SEA) algorithm implemented, leads the fast RAP search from the first scan through RAP CL and retain new RAP in the RAP CL using case-based reasoning (CBR) during subsequent scanning. Thus, the RAP miner built proves road accident prediction using SEA, FIE and CBR with the highest accuracy and fast RAP set processing.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\"5 1\",\"pages\":\"484 - 498\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2021.1955533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2021.1955533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

特定领域的数据服务模型可以从频繁发生的道路事故模式(rap)中检索关键特征。本研究的目的是提出基于扫描高效关联规则挖掘的模式分析,以最快的匹配模式搜索RAP数据库(RAP DB),在频繁事故地点提供更准确的RAP预测。关联规则挖掘技术将频繁的RAP与道路事故的各种属性之间的关联联系起来。聚类技术区分不同的RAPs, Naïve贝叶斯分类使用混合智能模糊推理引擎(FIE)与RAP案例库(RAP CL)接口对事故进行分类并预测事故严重程度。所提出的道路事故数据服务模型的结果证明,与报告的结果相比,事故预测的准确性有显著提高。一种新的混合学习算法,与实现的扫描效率Apriori (SEA)算法接口,从第一次扫描到RAP CL中引导快速RAP搜索,并在后续扫描期间使用基于案例的推理(CBR)在RAP CL中保留新的RAP。因此,构建的RAP miner证明了使用SEA、FIE和CBR进行道路事故预测具有最高的准确性和快速的RAP集处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A road accident pattern miner (RAP miner)
ABSTRACT Domain-specific data service models can retrieve critical features from frequently occurring road accident patterns (RAPs). The aim of this research is to propose scan efficient association rules’ mining-based pattern analysis which provides more accurate RAP prediction in frequent accident locations with the fastest matching pattern search from a RAP database (RAP DB). Association rules’ mining technique derives a correlation between frequent RAP and association among various attributes of a road accident. While the clustering technique discriminates different RAPs, Naïve Bayes Classification classifies and then predicts the severity of accident using Fuzzy Inference Engine (FIE) interfaced with RAP Case Library (RAP CL) using hybrid intelligence. The results of the proposed road accident data service model prove a significant increase in the accuracy of accident prediction compared to the reported results. A novel hybrid learning algorithm, interfaced with Scan Efficient Apriori (SEA) algorithm implemented, leads the fast RAP search from the first scan through RAP CL and retain new RAP in the RAP CL using case-based reasoning (CBR) during subsequent scanning. Thus, the RAP miner built proves road accident prediction using SEA, FIE and CBR with the highest accuracy and fast RAP set processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
期刊最新文献
Utilizing deep learning in chipless RFID tag detection: an investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging On the performance of outage probability in cognitive NOMA random networks with hardware impairments Relay-assisted communication over a fluctuating two-ray fading channel Modified Caesar Cipher and Card Deck Shuffle Rearrangement Algorithm for Image Encryption Application of data envelopment analysis to IT project evaluation, with special emphasis on the choice of inputs and outputs in the context of the organization in question
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1