{"title":"使用纳米流体作为冷却器的光伏太阳能电池板性能研究","authors":"R. Abdeldjebar, M. Elmir, M. Douha","doi":"10.2478/lpts-2023-0018","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study by numerical simulation, the cooling of a solar photovoltaic panel using a nanofluid as a cooler. The solar panel is subjected to a hot temperature that character-ises the climate of the city of Bechar located in southwestern Algeria. The nanofluid (Al2O3-water) is introduced in the cavity with a constant horizontal speed and subjected to the ambient (cold) temperature. The equations governing the hydrodynamics of the flow and the heat transfer are described by the Navier-Stockes and energy equations. The finite element method is used to solve the system of partial differential equations (PDEs) based on the Galerkin method. We consider the effect of solid volume fraction and form factor for different values of Reynolds number on the results in the form of isotherms, streamlines, temperature, velocity, average Nusselt numbers and solar panel efficiency.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"60 1","pages":"69 - 84"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Performance of a Photovoltaic Solar Panel by Using a Nanofluid as a Cooler\",\"authors\":\"R. Abdeldjebar, M. Elmir, M. Douha\",\"doi\":\"10.2478/lpts-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study by numerical simulation, the cooling of a solar photovoltaic panel using a nanofluid as a cooler. The solar panel is subjected to a hot temperature that character-ises the climate of the city of Bechar located in southwestern Algeria. The nanofluid (Al2O3-water) is introduced in the cavity with a constant horizontal speed and subjected to the ambient (cold) temperature. The equations governing the hydrodynamics of the flow and the heat transfer are described by the Navier-Stockes and energy equations. The finite element method is used to solve the system of partial differential equations (PDEs) based on the Galerkin method. We consider the effect of solid volume fraction and form factor for different values of Reynolds number on the results in the form of isotherms, streamlines, temperature, velocity, average Nusselt numbers and solar panel efficiency.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"60 1\",\"pages\":\"69 - 84\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2023-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Study of the Performance of a Photovoltaic Solar Panel by Using a Nanofluid as a Cooler
Abstract In this paper, we study by numerical simulation, the cooling of a solar photovoltaic panel using a nanofluid as a cooler. The solar panel is subjected to a hot temperature that character-ises the climate of the city of Bechar located in southwestern Algeria. The nanofluid (Al2O3-water) is introduced in the cavity with a constant horizontal speed and subjected to the ambient (cold) temperature. The equations governing the hydrodynamics of the flow and the heat transfer are described by the Navier-Stockes and energy equations. The finite element method is used to solve the system of partial differential equations (PDEs) based on the Galerkin method. We consider the effect of solid volume fraction and form factor for different values of Reynolds number on the results in the form of isotherms, streamlines, temperature, velocity, average Nusselt numbers and solar panel efficiency.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.