利用差异项函数检验自我报告测量的有效性证据——三种方法的例证

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2018-10-01 DOI:10.1027/1614-2241/a000156
A. Gadermann, Michelle Y. Chen, S. D. Emerson, B. Zumbo
{"title":"利用差异项函数检验自我报告测量的有效性证据——三种方法的例证","authors":"A. Gadermann, Michelle Y. Chen, S. D. Emerson, B. Zumbo","doi":"10.1027/1614-2241/a000156","DOIUrl":null,"url":null,"abstract":"The investigation of differential item functioning (DIF) is important for any group comparison because the validity of the inferences made from scale scores could be compromised if DIF is present. DIF occurs when individuals from different groups show different probabilities of selecting a response option to an item after being matched on the underlying latent variable that the item is supposed to measure. The aim of this paper is to inform the practice of DIF analyses in survey research. We focus on three quantitative methods to detect DIF, namely nonparametric item response theory (NIRT), ordinal logistic regression (OLR), and mixed-effects or multilevel models. Using these methods, we demonstrate how to examine DIF at the item and scale levels, as well as in multilevel settings. We discuss when these techniques are appropriate to use, what data assumptions they have, and their advantages and disadvantages in the analysis of survey data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Examining Validity Evidence of Self-Report Measures Using Differential Item Functioning: An Illustration of Three Methods\",\"authors\":\"A. Gadermann, Michelle Y. Chen, S. D. Emerson, B. Zumbo\",\"doi\":\"10.1027/1614-2241/a000156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of differential item functioning (DIF) is important for any group comparison because the validity of the inferences made from scale scores could be compromised if DIF is present. DIF occurs when individuals from different groups show different probabilities of selecting a response option to an item after being matched on the underlying latent variable that the item is supposed to measure. The aim of this paper is to inform the practice of DIF analyses in survey research. We focus on three quantitative methods to detect DIF, namely nonparametric item response theory (NIRT), ordinal logistic regression (OLR), and mixed-effects or multilevel models. Using these methods, we demonstrate how to examine DIF at the item and scale levels, as well as in multilevel settings. We discuss when these techniques are appropriate to use, what data assumptions they have, and their advantages and disadvantages in the analysis of survey data.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/a000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/a000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

摘要

差异项目功能(DIF)的调查对于任何小组比较都很重要,因为如果存在DIF,从量表得分得出的推论的有效性可能会受到影响。当来自不同群体的个体在与项目应该测量的潜在变量匹配后,表现出选择对项目的响应选项的不同概率时,就会发生DIF。本文的目的是为DIF分析在调查研究中的实践提供信息。我们重点研究了三种检测DIF的定量方法,即非参数项目反应理论(NIRT)、有序逻辑回归(OLR)和混合效应或多水平模型。使用这些方法,我们演示了如何在项目和规模级别以及多级别设置中检查DIF。我们讨论了这些技术何时适合使用,它们有什么数据假设,以及它们在调查数据分析中的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining Validity Evidence of Self-Report Measures Using Differential Item Functioning: An Illustration of Three Methods
The investigation of differential item functioning (DIF) is important for any group comparison because the validity of the inferences made from scale scores could be compromised if DIF is present. DIF occurs when individuals from different groups show different probabilities of selecting a response option to an item after being matched on the underlying latent variable that the item is supposed to measure. The aim of this paper is to inform the practice of DIF analyses in survey research. We focus on three quantitative methods to detect DIF, namely nonparametric item response theory (NIRT), ordinal logistic regression (OLR), and mixed-effects or multilevel models. Using these methods, we demonstrate how to examine DIF at the item and scale levels, as well as in multilevel settings. We discuss when these techniques are appropriate to use, what data assumptions they have, and their advantages and disadvantages in the analysis of survey data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1