计划导弹:如何发射,发射多少?

IF 8.9 2区 管理学 Q1 MANAGEMENT Organizational Research Methods Pub Date : 2021-05-28 DOI:10.1177/10944281211016534
Charlene Zhang, Martin C. Yu
{"title":"计划导弹:如何发射,发射多少?","authors":"Charlene Zhang, Martin C. Yu","doi":"10.1177/10944281211016534","DOIUrl":null,"url":null,"abstract":"Planned missingness (PM) can be implemented for survey studies to reduce study length and respondent fatigue. Based on a large sample of Big Five personality data, the present study simulates how factors including PM design (three-form and random percentage [RP]), amount of missingness, and sample size affect the ability of full-information maximum likelihood (FIML) estimation to treat missing data. Results show that although the effectiveness of FIML for treating missing data decreases as sample size decreases and amount of missing data increases, estimates only deviate substantially from truth in extreme conditions. Furthermore, the specific PM design, whether it be a three-form or RP design, makes little difference although the RP design should be easier to implement for computer-based surveys. The examination of specific boundary conditions for the application of PM as paired with FIML techniques has important implications for both the research methods literature and practitioners regularly conducting survey research","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"25 1","pages":"623 - 641"},"PeriodicalIF":8.9000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10944281211016534","citationCount":"5","resultStr":"{\"title\":\"Planned Missingness: How to and How Much?\",\"authors\":\"Charlene Zhang, Martin C. Yu\",\"doi\":\"10.1177/10944281211016534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planned missingness (PM) can be implemented for survey studies to reduce study length and respondent fatigue. Based on a large sample of Big Five personality data, the present study simulates how factors including PM design (three-form and random percentage [RP]), amount of missingness, and sample size affect the ability of full-information maximum likelihood (FIML) estimation to treat missing data. Results show that although the effectiveness of FIML for treating missing data decreases as sample size decreases and amount of missing data increases, estimates only deviate substantially from truth in extreme conditions. Furthermore, the specific PM design, whether it be a three-form or RP design, makes little difference although the RP design should be easier to implement for computer-based surveys. The examination of specific boundary conditions for the application of PM as paired with FIML techniques has important implications for both the research methods literature and practitioners regularly conducting survey research\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"25 1\",\"pages\":\"623 - 641\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/10944281211016534\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281211016534\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281211016534","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 5

摘要

可以对调查研究实施计划缺失(PM),以减少研究时间和受访者疲劳。基于五大人格数据的大样本,本研究模拟了PM设计(三种形式和随机百分比[RP])、缺失量和样本量等因素如何影响全信息最大似然(FIML)估计处理缺失数据的能力。结果表明,尽管FIML处理缺失数据的有效性随着样本量的减少和缺失数据量的增加而降低,但在极端条件下,估计值仅与真实值有很大偏差。此外,具体的PM设计,无论是三种形式还是RP设计,都没有什么不同,尽管RP设计应该更容易在基于计算机的调查中实现。PM应用的特定边界条件的检查与FIML技术相结合,对研究方法文献和定期进行调查研究的从业者都具有重要意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Planned Missingness: How to and How Much?
Planned missingness (PM) can be implemented for survey studies to reduce study length and respondent fatigue. Based on a large sample of Big Five personality data, the present study simulates how factors including PM design (three-form and random percentage [RP]), amount of missingness, and sample size affect the ability of full-information maximum likelihood (FIML) estimation to treat missing data. Results show that although the effectiveness of FIML for treating missing data decreases as sample size decreases and amount of missing data increases, estimates only deviate substantially from truth in extreme conditions. Furthermore, the specific PM design, whether it be a three-form or RP design, makes little difference although the RP design should be easier to implement for computer-based surveys. The examination of specific boundary conditions for the application of PM as paired with FIML techniques has important implications for both the research methods literature and practitioners regularly conducting survey research
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.20
自引率
3.20%
发文量
17
期刊介绍: Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.
期刊最新文献
The Internet Never Forgets: A Four-Step Scraping Tutorial, Codebase, and Database for Longitudinal Organizational Website Data One Size Does Not Fit All: Unraveling Item Response Process Heterogeneity Using the Mixture Dominance-Unfolding Model (MixDUM) Taking It Easy: Off-the-Shelf Versus Fine-Tuned Supervised Modeling of Performance Appraisal Text Hello World! Building Computational Models to Represent Social and Organizational Theory The Effects of the Training Sample Size, Ground Truth Reliability, and NLP Method on Language-Based Automatic Interview Scores’ Psychometric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1