{"title":"固相肽合成LfcinB短肽类似物作为全球微生物耐药的替代品","authors":"Dimana Dimitrova Georgieva","doi":"10.2478/asn-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract Antibiotics are the main therapy in the treatment of infections caused by pathogenic bacteria. Their frequent and prolonged use leads to the development and spread of resistant microorganisms. According to the WHO, there is a worrying increase in global resistance to conventional antimicrobial therapy. This in turn poses a serious risk to public health and requires the search for an alternative to traditional pathogen therapy. Antimicrobial peptides (AMPs) are of great interest in this regard. They are produced naturally in all living organisms and are the first line of defense against fungi, viruses and bacteria. An example ofAMP with proven antimicrobial action are lactoferricins. They are cationic amphipathic peptides and have been found in both humans (LfcinH) and other mammals (cattle (LfcinB), mice (LfcinM) and goats (LfcinC). The most powerful antibacterial effect among them shows LfcinB. Using SPPS methods, short peptide molecules were obtained, analogs of LfcinB, which show a stronger antibacterial effect compared to the native peptide. In recent years, lactoferricins have been the subject of a number of scientific studies and represent a potential alternative for the development of new therapies to combat antimicrobial drug resistance.","PeriodicalId":7171,"journal":{"name":"Acta Scientifica Naturalis","volume":"9 1","pages":"56 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short peptide analogs of LfcinB synthesized by Solid Phase Peptide Synthesis as an alternative to global microbial resistance\",\"authors\":\"Dimana Dimitrova Georgieva\",\"doi\":\"10.2478/asn-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Antibiotics are the main therapy in the treatment of infections caused by pathogenic bacteria. Their frequent and prolonged use leads to the development and spread of resistant microorganisms. According to the WHO, there is a worrying increase in global resistance to conventional antimicrobial therapy. This in turn poses a serious risk to public health and requires the search for an alternative to traditional pathogen therapy. Antimicrobial peptides (AMPs) are of great interest in this regard. They are produced naturally in all living organisms and are the first line of defense against fungi, viruses and bacteria. An example ofAMP with proven antimicrobial action are lactoferricins. They are cationic amphipathic peptides and have been found in both humans (LfcinH) and other mammals (cattle (LfcinB), mice (LfcinM) and goats (LfcinC). The most powerful antibacterial effect among them shows LfcinB. Using SPPS methods, short peptide molecules were obtained, analogs of LfcinB, which show a stronger antibacterial effect compared to the native peptide. In recent years, lactoferricins have been the subject of a number of scientific studies and represent a potential alternative for the development of new therapies to combat antimicrobial drug resistance.\",\"PeriodicalId\":7171,\"journal\":{\"name\":\"Acta Scientifica Naturalis\",\"volume\":\"9 1\",\"pages\":\"56 - 64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Scientifica Naturalis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/asn-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientifica Naturalis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/asn-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short peptide analogs of LfcinB synthesized by Solid Phase Peptide Synthesis as an alternative to global microbial resistance
Abstract Antibiotics are the main therapy in the treatment of infections caused by pathogenic bacteria. Their frequent and prolonged use leads to the development and spread of resistant microorganisms. According to the WHO, there is a worrying increase in global resistance to conventional antimicrobial therapy. This in turn poses a serious risk to public health and requires the search for an alternative to traditional pathogen therapy. Antimicrobial peptides (AMPs) are of great interest in this regard. They are produced naturally in all living organisms and are the first line of defense against fungi, viruses and bacteria. An example ofAMP with proven antimicrobial action are lactoferricins. They are cationic amphipathic peptides and have been found in both humans (LfcinH) and other mammals (cattle (LfcinB), mice (LfcinM) and goats (LfcinC). The most powerful antibacterial effect among them shows LfcinB. Using SPPS methods, short peptide molecules were obtained, analogs of LfcinB, which show a stronger antibacterial effect compared to the native peptide. In recent years, lactoferricins have been the subject of a number of scientific studies and represent a potential alternative for the development of new therapies to combat antimicrobial drug resistance.