印度土鸡性别和品种分类的有效监督机器学习方法

Thavamani Subramani, Vijayakumar Jeganathan, Sruthi Kunkuma, Balasubramanian
{"title":"印度土鸡性别和品种分类的有效监督机器学习方法","authors":"Thavamani Subramani, Vijayakumar Jeganathan, Sruthi Kunkuma, Balasubramanian","doi":"10.46604/peti.2023.11361","DOIUrl":null,"url":null,"abstract":"This study proposes a computer vision and machine learning (ML)-based approach to classify gender and breed in native chicken production industries with minimal human intervention. The supervised ML and feature extraction algorithms are utilized to classify eleven Indian chicken breeds, with 17,600 training samples and 4,400 testing samples (80:20 ratio). The gray-level co-occurrence matrix (GLCM) algorithm is applied for feature extraction, and the principle component analysis (PCA) algorithm is used for feature selection. Among the tested 27 classifiers, the FG-SVM, F-KNN, and W-KNN classifiers obtain more than 90% accuracy, with individual accuracies of 90.1%, 99.1%, and 99.1%. The BT classifier performs well in gender and breed classification work, achieving accuracy, precision, sensitivity, and F-scores of 99.3%, 90.2%, 99.4%, and 99.5%, respectively, and a mean absolute error of 0.7.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Supervised Machine Learning Approach for Indian Native Chicken’s Gender and Breed Classification\",\"authors\":\"Thavamani Subramani, Vijayakumar Jeganathan, Sruthi Kunkuma, Balasubramanian\",\"doi\":\"10.46604/peti.2023.11361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a computer vision and machine learning (ML)-based approach to classify gender and breed in native chicken production industries with minimal human intervention. The supervised ML and feature extraction algorithms are utilized to classify eleven Indian chicken breeds, with 17,600 training samples and 4,400 testing samples (80:20 ratio). The gray-level co-occurrence matrix (GLCM) algorithm is applied for feature extraction, and the principle component analysis (PCA) algorithm is used for feature selection. Among the tested 27 classifiers, the FG-SVM, F-KNN, and W-KNN classifiers obtain more than 90% accuracy, with individual accuracies of 90.1%, 99.1%, and 99.1%. The BT classifier performs well in gender and breed classification work, achieving accuracy, precision, sensitivity, and F-scores of 99.3%, 90.2%, 99.4%, and 99.5%, respectively, and a mean absolute error of 0.7.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2023.11361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.11361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于计算机视觉和机器学习(ML)的方法,在人工干预最少的情况下对土鸡生产行业的性别和品种进行分类。利用监督机器学习和特征提取算法对11个印度鸡品种进行分类,其中训练样本17,600个,测试样本4,400个(80:20的比例)。采用灰度共生矩阵(GLCM)算法进行特征提取,采用主成分分析(PCA)算法进行特征选择。在测试的27个分类器中,FG-SVM、F-KNN和W-KNN分类器的准确率均在90%以上,单个准确率分别为90.1%、99.1%和99.1%。BT分类器在性别和品种分类工作中表现良好,准确率、精密度、灵敏度和f分分别达到99.3%、90.2%、99.4%和99.5%,平均绝对误差为0.7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Supervised Machine Learning Approach for Indian Native Chicken’s Gender and Breed Classification
This study proposes a computer vision and machine learning (ML)-based approach to classify gender and breed in native chicken production industries with minimal human intervention. The supervised ML and feature extraction algorithms are utilized to classify eleven Indian chicken breeds, with 17,600 training samples and 4,400 testing samples (80:20 ratio). The gray-level co-occurrence matrix (GLCM) algorithm is applied for feature extraction, and the principle component analysis (PCA) algorithm is used for feature selection. Among the tested 27 classifiers, the FG-SVM, F-KNN, and W-KNN classifiers obtain more than 90% accuracy, with individual accuracies of 90.1%, 99.1%, and 99.1%. The BT classifier performs well in gender and breed classification work, achieving accuracy, precision, sensitivity, and F-scores of 99.3%, 90.2%, 99.4%, and 99.5%, respectively, and a mean absolute error of 0.7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Quantitative Shaking Evaluation of Bracing-Strengthened and Base-Isolated Buildings Using Seismic Intensity Level Prediction of Crop Leaf Health by MCCM and Histogram Learning Model Using Leaf Region A Self-Repairing Natural Rubber as a Novel Material Pad to Develop an Electro-Surgical Training Prototype Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1