{"title":"巴氏孢杆菌对污染尾矿中镉、铅的生物修复潜力及主要机制","authors":"Fengli Xu, Dongxing Wang","doi":"10.1080/02757540.2023.2202659","DOIUrl":null,"url":null,"abstract":"ABSTRACT Efficient bioremediation technology has drawn extensive attention from scholars due to the serious damage caused by heavy metals (HMs) to the environment. This study explored the remediation potential and mechanisms of the S. pasteurii strain in alleviating toxicity of Cd and Pb in tailings. The results showed that the decrease in DTPA-Cd and -Pb was associated with the transfer of exchangeable HMs to carbonate-bound HMs in bacteria-treated tailings. Biomineralization, extracellular adsorption, and intracellular accumulation were observed to result in removal rates above 95% for HMs in tailings solution. Mineralisation products driven-urease were identified as carbonate minerals, including otavite CdCO3, cerussite PbCO3 and hydrocerussite Pb3(CO3)2(OH)2. However, the increased Km in the urease kinetics study indicated that HMs reduced urease activity and biomineralization by minimum inhibitory concentrations (Cd 0.5 mM and Pb 40 mM). The functional groups (-OH, -NH2, -COOH and -PO4 3-) on the bacterial surface were involved in immobilising HMs, while the biosorption capacity (qm) was inhibited by metal ions (Pb2+ > Cd2+) according to Langmuir sorption isotherm. In conclusion, the biomineralization-adsorption of S. pasteurii was the mainstay for stabilising Cd and Pb in tailings, and the contribution of biomineralization was found to be much higher than that of biosorption.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation potential and primary mechanism of Sporosarcina pasteurii for cadmium (Cd) and lead (Pb) in contaminated tailings\",\"authors\":\"Fengli Xu, Dongxing Wang\",\"doi\":\"10.1080/02757540.2023.2202659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Efficient bioremediation technology has drawn extensive attention from scholars due to the serious damage caused by heavy metals (HMs) to the environment. This study explored the remediation potential and mechanisms of the S. pasteurii strain in alleviating toxicity of Cd and Pb in tailings. The results showed that the decrease in DTPA-Cd and -Pb was associated with the transfer of exchangeable HMs to carbonate-bound HMs in bacteria-treated tailings. Biomineralization, extracellular adsorption, and intracellular accumulation were observed to result in removal rates above 95% for HMs in tailings solution. Mineralisation products driven-urease were identified as carbonate minerals, including otavite CdCO3, cerussite PbCO3 and hydrocerussite Pb3(CO3)2(OH)2. However, the increased Km in the urease kinetics study indicated that HMs reduced urease activity and biomineralization by minimum inhibitory concentrations (Cd 0.5 mM and Pb 40 mM). The functional groups (-OH, -NH2, -COOH and -PO4 3-) on the bacterial surface were involved in immobilising HMs, while the biosorption capacity (qm) was inhibited by metal ions (Pb2+ > Cd2+) according to Langmuir sorption isotherm. In conclusion, the biomineralization-adsorption of S. pasteurii was the mainstay for stabilising Cd and Pb in tailings, and the contribution of biomineralization was found to be much higher than that of biosorption.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02757540.2023.2202659\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02757540.2023.2202659","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioremediation potential and primary mechanism of Sporosarcina pasteurii for cadmium (Cd) and lead (Pb) in contaminated tailings
ABSTRACT Efficient bioremediation technology has drawn extensive attention from scholars due to the serious damage caused by heavy metals (HMs) to the environment. This study explored the remediation potential and mechanisms of the S. pasteurii strain in alleviating toxicity of Cd and Pb in tailings. The results showed that the decrease in DTPA-Cd and -Pb was associated with the transfer of exchangeable HMs to carbonate-bound HMs in bacteria-treated tailings. Biomineralization, extracellular adsorption, and intracellular accumulation were observed to result in removal rates above 95% for HMs in tailings solution. Mineralisation products driven-urease were identified as carbonate minerals, including otavite CdCO3, cerussite PbCO3 and hydrocerussite Pb3(CO3)2(OH)2. However, the increased Km in the urease kinetics study indicated that HMs reduced urease activity and biomineralization by minimum inhibitory concentrations (Cd 0.5 mM and Pb 40 mM). The functional groups (-OH, -NH2, -COOH and -PO4 3-) on the bacterial surface were involved in immobilising HMs, while the biosorption capacity (qm) was inhibited by metal ions (Pb2+ > Cd2+) according to Langmuir sorption isotherm. In conclusion, the biomineralization-adsorption of S. pasteurii was the mainstay for stabilising Cd and Pb in tailings, and the contribution of biomineralization was found to be much higher than that of biosorption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.