行人背部碰撞致创伤性脑损伤模型

A. Tamura, King H. Yang
{"title":"行人背部碰撞致创伤性脑损伤模型","authors":"A. Tamura, King H. Yang","doi":"10.1504/ijvs.2020.10031698","DOIUrl":null,"url":null,"abstract":"Backover collisions causing Traumatic Brain Injuries (TBIs) are underreported, and its severity may have been overlooked and underestimated. We conducted a series of pedestrian impact simulations involving backover collisions with a reversing vehicle, at a low speed of 10 km/h, to determine the risk of sustaining severe TBIs. Our modelling studies revealed a significant risk despite the 'moderate' impact configuration applied. By systematically performing injury analyses based on selected mechanical parameters, we found that TBI risk involved in primary head strike with a striking vehicle was almost negligible because of the low-speed collision, but significant injuries result from ground impact. Our study also demonstrated that pedestrians are potentially at a greater risk for TBI when struck by a Sport Utility Vehicle (SUV) than a conventional sedan, because the impact energy would be effectively transmitted from the SUV via its flat rear surface with a steep angle.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling traumatic brain injury in pedestrian involved in backover collisions\",\"authors\":\"A. Tamura, King H. Yang\",\"doi\":\"10.1504/ijvs.2020.10031698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backover collisions causing Traumatic Brain Injuries (TBIs) are underreported, and its severity may have been overlooked and underestimated. We conducted a series of pedestrian impact simulations involving backover collisions with a reversing vehicle, at a low speed of 10 km/h, to determine the risk of sustaining severe TBIs. Our modelling studies revealed a significant risk despite the 'moderate' impact configuration applied. By systematically performing injury analyses based on selected mechanical parameters, we found that TBI risk involved in primary head strike with a striking vehicle was almost negligible because of the low-speed collision, but significant injuries result from ground impact. Our study also demonstrated that pedestrians are potentially at a greater risk for TBI when struck by a Sport Utility Vehicle (SUV) than a conventional sedan, because the impact energy would be effectively transmitted from the SUV via its flat rear surface with a steep angle.\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvs.2020.10031698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvs.2020.10031698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

造成创伤性脑损伤的倒车碰撞报告不足,其严重程度可能被忽视和低估。我们进行了一系列行人碰撞模拟,包括在10公里/小时的低速下与倒车车辆的倒车碰撞,以确定持续严重TBI的风险。我们的建模研究显示,尽管采用了“中等”冲击配置,但仍存在重大风险。通过基于选定的机械参数系统地进行损伤分析,我们发现,由于低速碰撞,与撞击车辆发生初次头部撞击所涉及的TBI风险几乎可以忽略不计,但地面撞击会造成严重伤害。我们的研究还表明,与传统轿车相比,行人在被运动型多用途车(SUV)撞击时可能面临更大的TBI风险,因为撞击能量将通过SUV的平坦后表面以陡峭的角度有效传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling traumatic brain injury in pedestrian involved in backover collisions
Backover collisions causing Traumatic Brain Injuries (TBIs) are underreported, and its severity may have been overlooked and underestimated. We conducted a series of pedestrian impact simulations involving backover collisions with a reversing vehicle, at a low speed of 10 km/h, to determine the risk of sustaining severe TBIs. Our modelling studies revealed a significant risk despite the 'moderate' impact configuration applied. By systematically performing injury analyses based on selected mechanical parameters, we found that TBI risk involved in primary head strike with a striking vehicle was almost negligible because of the low-speed collision, but significant injuries result from ground impact. Our study also demonstrated that pedestrians are potentially at a greater risk for TBI when struck by a Sport Utility Vehicle (SUV) than a conventional sedan, because the impact energy would be effectively transmitted from the SUV via its flat rear surface with a steep angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
期刊最新文献
Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Driving safety of articulated vehicle on a typical interchange Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Research on test scenarios of AEB pedestrian system based on knowledge and accident data Relationship between mobile phone addiction and driving accidents in two groups of drivers with and without accidents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1