{"title":"个体观测与频率的回归建模与预测","authors":"S. Lipovetsky","doi":"10.22237/jmasm/1556669100","DOIUrl":null,"url":null,"abstract":"A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regression Modeling and Prediction by Individual Observations versus Frequency\",\"authors\":\"S. Lipovetsky\",\"doi\":\"10.22237/jmasm/1556669100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1556669100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1556669100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Regression Modeling and Prediction by Individual Observations versus Frequency
A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.
期刊介绍:
The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.