3D打印在纺织品设计中的几何结构

IF 0.7 Q3 MATERIALS SCIENCE, TEXTILES TEKSTILEC Pub Date : 2023-01-05 DOI:10.14502/tekstilec.65.2022092
C. Arikan, Samet Doğan, Deja Muck
{"title":"3D打印在纺织品设计中的几何结构","authors":"C. Arikan, Samet Doğan, Deja Muck","doi":"10.14502/tekstilec.65.2022092","DOIUrl":null,"url":null,"abstract":"3D printing is a well-known technology for producing 3D objects by depositing successive layers of material. Among its many applications, the fashion industry has taken advantage of this technology to revolutionize its brands. Due to the unique properties of textiles, such as comfort, flexibility, etc., attempts have been made to create textile-like structures. Structures with different geometries were designed and printed using different materials ranging from rigid to flexible. In this study, three different basic geometric structures were designed using the Blender program (a free open-source 3D modelling software). Each geometric structure was designed in two different sizes with smaller and larger basic structural elements. In this case, six different models were created. The aim of this study was to compare the textile-like surfaces of different basic geometric shapes produced with 3D printers. It also aimed to investigate the use of surfaces designed with basic geometric shapes in the textile-like material for fashion industries. In the production phase, the fused deposition modelling (FDM) process was chosen, and ABS and TPU materials were used. Various tests were performed, such as weight tests, and tensile and flexural strength tests on models with different basic geometric shapes and sizes. An examination of the test results showed that the different geometric shapes of the various basic structures and the different materials used have an overall effect on the final properties of the structures. It was concluded that the obtained results can be used as a reference and could be helpful for researchers in the use of 3D printers in the textile-like material and fashion material industries.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Structures in Textile Design Made with 3D Printing\",\"authors\":\"C. Arikan, Samet Doğan, Deja Muck\",\"doi\":\"10.14502/tekstilec.65.2022092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D printing is a well-known technology for producing 3D objects by depositing successive layers of material. Among its many applications, the fashion industry has taken advantage of this technology to revolutionize its brands. Due to the unique properties of textiles, such as comfort, flexibility, etc., attempts have been made to create textile-like structures. Structures with different geometries were designed and printed using different materials ranging from rigid to flexible. In this study, three different basic geometric structures were designed using the Blender program (a free open-source 3D modelling software). Each geometric structure was designed in two different sizes with smaller and larger basic structural elements. In this case, six different models were created. The aim of this study was to compare the textile-like surfaces of different basic geometric shapes produced with 3D printers. It also aimed to investigate the use of surfaces designed with basic geometric shapes in the textile-like material for fashion industries. In the production phase, the fused deposition modelling (FDM) process was chosen, and ABS and TPU materials were used. Various tests were performed, such as weight tests, and tensile and flexural strength tests on models with different basic geometric shapes and sizes. An examination of the test results showed that the different geometric shapes of the various basic structures and the different materials used have an overall effect on the final properties of the structures. It was concluded that the obtained results can be used as a reference and could be helpful for researchers in the use of 3D printers in the textile-like material and fashion material industries.\",\"PeriodicalId\":22555,\"journal\":{\"name\":\"TEKSTILEC\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKSTILEC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14502/tekstilec.65.2022092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKSTILEC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14502/tekstilec.65.2022092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

3D打印是一项众所周知的技术,通过沉积连续的材料层来生产3D物体。在其众多应用中,时尚行业利用这项技术彻底改变了其品牌。由于纺织品的独特性能,如舒适性、柔韧性等,人们尝试创造类似纺织品的结构。不同几何形状的结构被设计和印刷,使用不同的材料,从刚性到柔性。在这项研究中,使用Blender程序(一个免费的开源3D建模软件)设计了三种不同的基本几何结构。每个几何结构都设计成两种不同的尺寸,具有较小和较大的基本结构元素。在本例中,创建了六个不同的模型。本研究的目的是比较用3D打印机生产的不同基本几何形状的类似纺织品的表面。它还旨在研究在时尚行业中使用类似纺织材料的基本几何形状设计的表面。在生产阶段,选择了熔融沉积建模(FDM)工艺,并使用了ABS和TPU材料。对具有不同基本几何形状和尺寸的模型进行了各种测试,如重量测试、拉伸和弯曲强度测试。对试验结果的检验表明,各种基本结构的不同几何形状和使用的不同材料对结构的最终性能有总体影响。所得结果可作为参考,为3D打印机在类纺织材料和时尚材料行业的应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric Structures in Textile Design Made with 3D Printing
3D printing is a well-known technology for producing 3D objects by depositing successive layers of material. Among its many applications, the fashion industry has taken advantage of this technology to revolutionize its brands. Due to the unique properties of textiles, such as comfort, flexibility, etc., attempts have been made to create textile-like structures. Structures with different geometries were designed and printed using different materials ranging from rigid to flexible. In this study, three different basic geometric structures were designed using the Blender program (a free open-source 3D modelling software). Each geometric structure was designed in two different sizes with smaller and larger basic structural elements. In this case, six different models were created. The aim of this study was to compare the textile-like surfaces of different basic geometric shapes produced with 3D printers. It also aimed to investigate the use of surfaces designed with basic geometric shapes in the textile-like material for fashion industries. In the production phase, the fused deposition modelling (FDM) process was chosen, and ABS and TPU materials were used. Various tests were performed, such as weight tests, and tensile and flexural strength tests on models with different basic geometric shapes and sizes. An examination of the test results showed that the different geometric shapes of the various basic structures and the different materials used have an overall effect on the final properties of the structures. It was concluded that the obtained results can be used as a reference and could be helpful for researchers in the use of 3D printers in the textile-like material and fashion material industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEKSTILEC
TEKSTILEC MATERIALS SCIENCE, TEXTILES-
CiteScore
1.30
自引率
14.30%
发文量
22
审稿时长
12 weeks
期刊最新文献
Study on the Comfort Properties of Knitted Fabrics Produced from Conventional and Sustainable Cotton and Polyester Fibres Green in-situ synthesis of TiO2 in combination with Curcuma longa for the tailoring of multifunctional cotton fabric Effect of Blending Cotton/Bamboo on UV Protection and Functional Purposes of Trilobal Polyester Microfibers Knitted Fabrics Using Different Structures Computer Modelling of Yarn Winding on Conical Bobbins Carpet Back Sizing Quality Assessment by Measuring the Amount of Resin Using Image Processing and Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1