{"title":"高强度β钛合金的研究现状及发展趋势","authors":"Chen Wei, Liu Yunxi, Liao Zhiqiang","doi":"10.11868/J.ISSN.1005-5053.2020.000071","DOIUrl":null,"url":null,"abstract":"β-Ti alloys have been used in many military/commercial aircraft since 1950s. Their high specific strength, good corrosion resistance, and high formability meet the special requirement of certain structures. Despite a further understanding of the relationship among chemistry, processing, and microstructure, as well as the expanding of performance data base, there is some stagnation in commercialization of new alloys over the past 20 years. This paper reviews the development and applications of β-Ti alloys, and summarizes the important processing parameters for microstructure control. The widely used 5 kinds of high-strength β-Ti alloys are discussed based on their processing-microstructure-property relationship. From the cost and performance perspectives, the challenges and opportunities of β-Ti alloys are identified. Future research will be focused on alloy compositions with more robust processing widows and better performance matching. The integrated computational materials design technology will be a prospect to accelerate the workflow development of chemistry-processing- microstructure-performance for high strength β-Ti alloys.","PeriodicalId":35630,"journal":{"name":"Hangkong Cailiao Xuebao/Journal of Aeronautical Materials","volume":"40 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research status and development trend of high-strength β titanium alloys\",\"authors\":\"Chen Wei, Liu Yunxi, Liao Zhiqiang\",\"doi\":\"10.11868/J.ISSN.1005-5053.2020.000071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"β-Ti alloys have been used in many military/commercial aircraft since 1950s. Their high specific strength, good corrosion resistance, and high formability meet the special requirement of certain structures. Despite a further understanding of the relationship among chemistry, processing, and microstructure, as well as the expanding of performance data base, there is some stagnation in commercialization of new alloys over the past 20 years. This paper reviews the development and applications of β-Ti alloys, and summarizes the important processing parameters for microstructure control. The widely used 5 kinds of high-strength β-Ti alloys are discussed based on their processing-microstructure-property relationship. From the cost and performance perspectives, the challenges and opportunities of β-Ti alloys are identified. Future research will be focused on alloy compositions with more robust processing widows and better performance matching. The integrated computational materials design technology will be a prospect to accelerate the workflow development of chemistry-processing- microstructure-performance for high strength β-Ti alloys.\",\"PeriodicalId\":35630,\"journal\":{\"name\":\"Hangkong Cailiao Xuebao/Journal of Aeronautical Materials\",\"volume\":\"40 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hangkong Cailiao Xuebao/Journal of Aeronautical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11868/J.ISSN.1005-5053.2020.000071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hangkong Cailiao Xuebao/Journal of Aeronautical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11868/J.ISSN.1005-5053.2020.000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Research status and development trend of high-strength β titanium alloys
β-Ti alloys have been used in many military/commercial aircraft since 1950s. Their high specific strength, good corrosion resistance, and high formability meet the special requirement of certain structures. Despite a further understanding of the relationship among chemistry, processing, and microstructure, as well as the expanding of performance data base, there is some stagnation in commercialization of new alloys over the past 20 years. This paper reviews the development and applications of β-Ti alloys, and summarizes the important processing parameters for microstructure control. The widely used 5 kinds of high-strength β-Ti alloys are discussed based on their processing-microstructure-property relationship. From the cost and performance perspectives, the challenges and opportunities of β-Ti alloys are identified. Future research will be focused on alloy compositions with more robust processing widows and better performance matching. The integrated computational materials design technology will be a prospect to accelerate the workflow development of chemistry-processing- microstructure-performance for high strength β-Ti alloys.