{"title":"学习中的人工智能","authors":"H. Niemi","doi":"10.1177/18344909211038105","DOIUrl":null,"url":null,"abstract":"This special issue raises two thematic questions: (1) How will AI change learning in the future and what role will human beings play in the interaction with machine learning, and (2), What can we learn from the articles in this special issue for future research? These questions are reflected in the frame of the recent discussion of human and machine learning. AI for learning provides many applications and multimodal channels for supporting people in cognitive and non-cognitive task domains. The articles in this special issue evidence that agency, engagement, self-efficacy, and collaboration are needed in learning and working with intelligent tools and environments. The importance of social elements is also clear in the articles. The articles also point out that the teacher’s role in digital pedagogy primarily involves facilitating and coaching. AI in learning has a high potential, but it also has many limitations. Many worries are linked with ethical issues, such as biases in algorithms, privacy, transparency, and data ownership. This special issue also highlights the concepts of explainability and explicability in the context of human learning. We need much more research and research-based discussion for making AI more trustworthy for users in learning environments and to prevent misconceptions.","PeriodicalId":45049,"journal":{"name":"Journal of Pacific Rim Psychology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"AI in learning\",\"authors\":\"H. Niemi\",\"doi\":\"10.1177/18344909211038105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This special issue raises two thematic questions: (1) How will AI change learning in the future and what role will human beings play in the interaction with machine learning, and (2), What can we learn from the articles in this special issue for future research? These questions are reflected in the frame of the recent discussion of human and machine learning. AI for learning provides many applications and multimodal channels for supporting people in cognitive and non-cognitive task domains. The articles in this special issue evidence that agency, engagement, self-efficacy, and collaboration are needed in learning and working with intelligent tools and environments. The importance of social elements is also clear in the articles. The articles also point out that the teacher’s role in digital pedagogy primarily involves facilitating and coaching. AI in learning has a high potential, but it also has many limitations. Many worries are linked with ethical issues, such as biases in algorithms, privacy, transparency, and data ownership. This special issue also highlights the concepts of explainability and explicability in the context of human learning. We need much more research and research-based discussion for making AI more trustworthy for users in learning environments and to prevent misconceptions.\",\"PeriodicalId\":45049,\"journal\":{\"name\":\"Journal of Pacific Rim Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pacific Rim Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/18344909211038105\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pacific Rim Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/18344909211038105","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
This special issue raises two thematic questions: (1) How will AI change learning in the future and what role will human beings play in the interaction with machine learning, and (2), What can we learn from the articles in this special issue for future research? These questions are reflected in the frame of the recent discussion of human and machine learning. AI for learning provides many applications and multimodal channels for supporting people in cognitive and non-cognitive task domains. The articles in this special issue evidence that agency, engagement, self-efficacy, and collaboration are needed in learning and working with intelligent tools and environments. The importance of social elements is also clear in the articles. The articles also point out that the teacher’s role in digital pedagogy primarily involves facilitating and coaching. AI in learning has a high potential, but it also has many limitations. Many worries are linked with ethical issues, such as biases in algorithms, privacy, transparency, and data ownership. This special issue also highlights the concepts of explainability and explicability in the context of human learning. We need much more research and research-based discussion for making AI more trustworthy for users in learning environments and to prevent misconceptions.