稀土成核剂对嵌段共聚聚丙烯超临界CO2发泡行为的影响

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2021-11-14 DOI:10.1177/02624893211053678
Yun Zhang, Yadong He, C. Xin, Yan-Qun Su
{"title":"稀土成核剂对嵌段共聚聚丙烯超临界CO2发泡行为的影响","authors":"Yun Zhang, Yadong He, C. Xin, Yan-Qun Su","doi":"10.1177/02624893211053678","DOIUrl":null,"url":null,"abstract":"The rare earth nucleating agent was used to modify block copolymerized polypropylene (PPB) in foaming process. The results show that the crystallization of PPB and the melting temperature of β-crystal increased gradually with increased β-crystal nucleating agent content. The total crystallinity decreased with amount of addition increasing, and the relative content of β-crystal increased first and then decreased. When β-crystal nucleating agent content was 0.4 wt%, the relative β-crystal content reached the maximum value of 95.27%, and the final crystal grain refinement significantly. The addition of rare earth β-crystal nucleating agent has a good effect on improving the uniformity of foam cells. Under the same content of β-crystal nucleating agent and pressure, the average cell diameter and expansion ratio increased with the saturation temperature increasing. After the foaming temperature reaches 155°C, the expansion ratio began to decrease, which was also consistent with the changed trend of relative β-crystal content. At the same content of temperature and relative β-crystal, as the foaming pressure increased, the cell diameter decreased gradually, and the expansion ratio increased first, and then decreased.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"41 1","pages":"53 - 79"},"PeriodicalIF":1.3000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of rare earth nucleating agent on supercritical CO2 foaming behavior of block copolymerized polypropylene\",\"authors\":\"Yun Zhang, Yadong He, C. Xin, Yan-Qun Su\",\"doi\":\"10.1177/02624893211053678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rare earth nucleating agent was used to modify block copolymerized polypropylene (PPB) in foaming process. The results show that the crystallization of PPB and the melting temperature of β-crystal increased gradually with increased β-crystal nucleating agent content. The total crystallinity decreased with amount of addition increasing, and the relative content of β-crystal increased first and then decreased. When β-crystal nucleating agent content was 0.4 wt%, the relative β-crystal content reached the maximum value of 95.27%, and the final crystal grain refinement significantly. The addition of rare earth β-crystal nucleating agent has a good effect on improving the uniformity of foam cells. Under the same content of β-crystal nucleating agent and pressure, the average cell diameter and expansion ratio increased with the saturation temperature increasing. After the foaming temperature reaches 155°C, the expansion ratio began to decrease, which was also consistent with the changed trend of relative β-crystal content. At the same content of temperature and relative β-crystal, as the foaming pressure increased, the cell diameter decreased gradually, and the expansion ratio increased first, and then decreased.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"41 1\",\"pages\":\"53 - 79\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211053678\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211053678","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

采用稀土成核剂对嵌段共聚聚丙烯(PPB)进行发泡改性。结果表明,随着β晶核剂含量的增加,PPB的结晶度和β晶的熔融温度逐渐升高。总结晶度随添加量的增加而降低,β-晶体的相对含量先增加后降低。当β晶核剂含量为0.4wt%时,相对β晶含量达到95.27%的最大值,最终晶粒细化明显。稀土β晶核剂的加入对提高泡沫细胞的均匀性有很好的效果。在相同的β-结晶成核剂含量和压力下,平均泡孔直径和膨胀率随饱和温度的升高而增加。发泡温度达到155°C后,膨胀率开始下降,这也与相对β-晶体含量的变化趋势一致。在相同的温度和相对β-晶体含量下,随着发泡压力的增加,泡孔直径逐渐减小,膨胀率先增大后减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of rare earth nucleating agent on supercritical CO2 foaming behavior of block copolymerized polypropylene
The rare earth nucleating agent was used to modify block copolymerized polypropylene (PPB) in foaming process. The results show that the crystallization of PPB and the melting temperature of β-crystal increased gradually with increased β-crystal nucleating agent content. The total crystallinity decreased with amount of addition increasing, and the relative content of β-crystal increased first and then decreased. When β-crystal nucleating agent content was 0.4 wt%, the relative β-crystal content reached the maximum value of 95.27%, and the final crystal grain refinement significantly. The addition of rare earth β-crystal nucleating agent has a good effect on improving the uniformity of foam cells. Under the same content of β-crystal nucleating agent and pressure, the average cell diameter and expansion ratio increased with the saturation temperature increasing. After the foaming temperature reaches 155°C, the expansion ratio began to decrease, which was also consistent with the changed trend of relative β-crystal content. At the same content of temperature and relative β-crystal, as the foaming pressure increased, the cell diameter decreased gradually, and the expansion ratio increased first, and then decreased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1