{"title":"紧凑稳健的基于MFCC的节省空间音频指纹提取用于调频广播监控中的高效音乐识别","authors":"Myo Thet Htun","doi":"10.5614/itbj.ict.res.appl.2022.16.3.3","DOIUrl":null,"url":null,"abstract":"The Myanmar music industry urgently needs an efficient broadcast monitoring system to solve copyright infringement issues and illegal benefit-sharing between artists and broadcasting stations. In this paper, a broadcast monitoring system is proposed for Myanmar FM radio stations by utilizing space-saving audio fingerprint extraction based on the Mel Frequency Cepstral Coefficient (MFCC). This study focused on reducing the memory requirement for fingerprint storage while preserving the robustness of the audio fingerprints to common distortions such as compression, noise addition, etc. In this system, a three-second audio clip is represented by a 2,712-bit fingerprint block. This significantly reduces the memory requirement when compared to Philips Robust Hashing (PRH), one of the dominant audio fingerprinting methods, where a three-second audio clip is represented by an 8,192-bit fingerprint block. The proposed system is easy to implement and achieves correct and speedy music identification even on noisy and distorted broadcast audio streams. In this research work, we deployed an audio fingerprint database of 7,094 songs and broadcast audio streams of four local FM channels in Myanmar to evaluate the performance of the proposed system. The experimental results showed that the system achieved reliable performance.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact and Robust MFCC-based Space-Saving Audio Fingerprint Extraction for Efficient Music Identification on FM Broadcast Monitoring\",\"authors\":\"Myo Thet Htun\",\"doi\":\"10.5614/itbj.ict.res.appl.2022.16.3.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Myanmar music industry urgently needs an efficient broadcast monitoring system to solve copyright infringement issues and illegal benefit-sharing between artists and broadcasting stations. In this paper, a broadcast monitoring system is proposed for Myanmar FM radio stations by utilizing space-saving audio fingerprint extraction based on the Mel Frequency Cepstral Coefficient (MFCC). This study focused on reducing the memory requirement for fingerprint storage while preserving the robustness of the audio fingerprints to common distortions such as compression, noise addition, etc. In this system, a three-second audio clip is represented by a 2,712-bit fingerprint block. This significantly reduces the memory requirement when compared to Philips Robust Hashing (PRH), one of the dominant audio fingerprinting methods, where a three-second audio clip is represented by an 8,192-bit fingerprint block. The proposed system is easy to implement and achieves correct and speedy music identification even on noisy and distorted broadcast audio streams. In this research work, we deployed an audio fingerprint database of 7,094 songs and broadcast audio streams of four local FM channels in Myanmar to evaluate the performance of the proposed system. The experimental results showed that the system achieved reliable performance.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Compact and Robust MFCC-based Space-Saving Audio Fingerprint Extraction for Efficient Music Identification on FM Broadcast Monitoring
The Myanmar music industry urgently needs an efficient broadcast monitoring system to solve copyright infringement issues and illegal benefit-sharing between artists and broadcasting stations. In this paper, a broadcast monitoring system is proposed for Myanmar FM radio stations by utilizing space-saving audio fingerprint extraction based on the Mel Frequency Cepstral Coefficient (MFCC). This study focused on reducing the memory requirement for fingerprint storage while preserving the robustness of the audio fingerprints to common distortions such as compression, noise addition, etc. In this system, a three-second audio clip is represented by a 2,712-bit fingerprint block. This significantly reduces the memory requirement when compared to Philips Robust Hashing (PRH), one of the dominant audio fingerprinting methods, where a three-second audio clip is represented by an 8,192-bit fingerprint block. The proposed system is easy to implement and achieves correct and speedy music identification even on noisy and distorted broadcast audio streams. In this research work, we deployed an audio fingerprint database of 7,094 songs and broadcast audio streams of four local FM channels in Myanmar to evaluate the performance of the proposed system. The experimental results showed that the system achieved reliable performance.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.