Zagorje Mid Transdanubian带(Mt.Kuna Gora;克罗地亚西北部)中三叠纪高钾钙碱性渗出岩和火山碎屑岩:矿物学、岩石学、地球化学和构造岩浆亲和力

IF 1.3 4区 地球科学 Q2 GEOLOGY Geologica Acta Pub Date : 2021-03-04 DOI:10.1344/GEOLOGICAACTA2021.19.2
Damir Slovenec, B. Šegvić
{"title":"Zagorje Mid Transdanubian带(Mt.Kuna Gora;克罗地亚西北部)中三叠纪高钾钙碱性渗出岩和火山碎屑岩:矿物学、岩石学、地球化学和构造岩浆亲和力","authors":"Damir Slovenec, B. Šegvić","doi":"10.1344/GEOLOGICAACTA2021.19.2","DOIUrl":null,"url":null,"abstract":"This study uses mineralogical, petrological, geochemical, and Sr and Nd isotope data along with K-Ar ages to infer the petrogenesis and geodynamic evolution of Middle Triassic high-K calc-alkaline lavas and their associated pyroclastics of Mt. Kuna Gora in NW Croatia. Their analogue mineralogy and bulk-rock geochemistry testify to the coeval origin of both rock types. Sanidine and plagioclase accompanied by inor augite and Ti-bearing magnetite are the major phases found in a matrix of devitrified volcanic glass and plagioclase microlites. Hydrothermal anddiagenetic processes in the pyroclastics originated the formation of chlorite and white mica, and mixed-layer clay minerals, respectively. Petrography reveals the following crystallization order: spinel→clinopyroxene→plagioclase→alkali-feldspar±Fe-Ti oxides. Geochemical and isotopic data suggests that the studied rocks had a complex origin that included the contamination of subduction-generated magmas by lithospheric mantle melts. This presumes an interplay between fertile arc mantle, subducted continental crust, and depleted or ocean island basalts-like mantle. A low degree of crustal contamination stands as a last step in the formation of such “hybrid” magmas. The subducted Paleotethyan oceanic lithosphere went through processes of partial melting at depths of ~45-49km and pressures of ≤1.6GPa and fractionation that produced melts which gave rise to the studied rocks. In the model we are proposing herein such formed partial melts are related to the demise of the northward subduction of the Paleotethys oceanic lithosphere during the Early to Middle Triassic epoch, which is consistent with an active, ensialic mature volcanic arc developing along Laurussian southern active margins.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Middle Triassic high-K calc-alkaline effusive and pyroclastic rocks from the Zagorje-Mid-Transdanubian Zone (Mt. Kuna Gora; NW Croatia): mineralogy, petrology, geochemistry and tectonomagmatic affinity\",\"authors\":\"Damir Slovenec, B. Šegvić\",\"doi\":\"10.1344/GEOLOGICAACTA2021.19.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses mineralogical, petrological, geochemical, and Sr and Nd isotope data along with K-Ar ages to infer the petrogenesis and geodynamic evolution of Middle Triassic high-K calc-alkaline lavas and their associated pyroclastics of Mt. Kuna Gora in NW Croatia. Their analogue mineralogy and bulk-rock geochemistry testify to the coeval origin of both rock types. Sanidine and plagioclase accompanied by inor augite and Ti-bearing magnetite are the major phases found in a matrix of devitrified volcanic glass and plagioclase microlites. Hydrothermal anddiagenetic processes in the pyroclastics originated the formation of chlorite and white mica, and mixed-layer clay minerals, respectively. Petrography reveals the following crystallization order: spinel→clinopyroxene→plagioclase→alkali-feldspar±Fe-Ti oxides. Geochemical and isotopic data suggests that the studied rocks had a complex origin that included the contamination of subduction-generated magmas by lithospheric mantle melts. This presumes an interplay between fertile arc mantle, subducted continental crust, and depleted or ocean island basalts-like mantle. A low degree of crustal contamination stands as a last step in the formation of such “hybrid” magmas. The subducted Paleotethyan oceanic lithosphere went through processes of partial melting at depths of ~45-49km and pressures of ≤1.6GPa and fractionation that produced melts which gave rise to the studied rocks. In the model we are proposing herein such formed partial melts are related to the demise of the northward subduction of the Paleotethys oceanic lithosphere during the Early to Middle Triassic epoch, which is consistent with an active, ensialic mature volcanic arc developing along Laurussian southern active margins.\",\"PeriodicalId\":55107,\"journal\":{\"name\":\"Geologica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1344/GEOLOGICAACTA2021.19.2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1344/GEOLOGICAACTA2021.19.2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

本研究使用矿物学、岩石学、地球化学、Sr和Nd同位素数据以及K-Ar年龄来推断克罗地亚西北部库纳戈拉山中三叠纪高钾钙碱性熔岩及其相关火山碎屑的岩石成因和地球动力学演化。它们的相似矿物学和大块岩石地球化学证明了这两种岩石类型的同时代起源。在失透火山玻璃和斜长石微晶的基质中发现的主要相是闪长岩和斜长石,并伴有普通辉石和含钛磁铁矿。火山碎屑岩中的热液和沉积过程分别起源于绿泥石和白云母以及混合层粘土矿物的形成。岩石学揭示了以下结晶顺序:尖晶石→单斜辉石→斜长石→碱性长石±铁钛氧化物。地球化学和同位素数据表明,所研究的岩石起源复杂,包括岩石圈地幔熔体对俯冲产生的岩浆的污染。这假设了肥沃的弧地幔、俯冲的大陆地壳和贫化或类似海岛玄武岩的地幔之间的相互作用。低程度的地壳污染是形成这种“混合”岩浆的最后一步。俯冲的古特提斯洋岩石圈在约45-49km的深度和≤1.6GPa的压力下经历了部分熔融和分馏过程,产生了产生所研究岩石的熔体。在我们提出的模型中,这种形成的部分熔体与早三叠纪至中三叠纪期间古特提斯洋岩石圈向北俯冲的消亡有关,这与沿着Laurussian南部活动边缘发育的活跃的、ensialic成熟的火山弧相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Middle Triassic high-K calc-alkaline effusive and pyroclastic rocks from the Zagorje-Mid-Transdanubian Zone (Mt. Kuna Gora; NW Croatia): mineralogy, petrology, geochemistry and tectonomagmatic affinity
This study uses mineralogical, petrological, geochemical, and Sr and Nd isotope data along with K-Ar ages to infer the petrogenesis and geodynamic evolution of Middle Triassic high-K calc-alkaline lavas and their associated pyroclastics of Mt. Kuna Gora in NW Croatia. Their analogue mineralogy and bulk-rock geochemistry testify to the coeval origin of both rock types. Sanidine and plagioclase accompanied by inor augite and Ti-bearing magnetite are the major phases found in a matrix of devitrified volcanic glass and plagioclase microlites. Hydrothermal anddiagenetic processes in the pyroclastics originated the formation of chlorite and white mica, and mixed-layer clay minerals, respectively. Petrography reveals the following crystallization order: spinel→clinopyroxene→plagioclase→alkali-feldspar±Fe-Ti oxides. Geochemical and isotopic data suggests that the studied rocks had a complex origin that included the contamination of subduction-generated magmas by lithospheric mantle melts. This presumes an interplay between fertile arc mantle, subducted continental crust, and depleted or ocean island basalts-like mantle. A low degree of crustal contamination stands as a last step in the formation of such “hybrid” magmas. The subducted Paleotethyan oceanic lithosphere went through processes of partial melting at depths of ~45-49km and pressures of ≤1.6GPa and fractionation that produced melts which gave rise to the studied rocks. In the model we are proposing herein such formed partial melts are related to the demise of the northward subduction of the Paleotethys oceanic lithosphere during the Early to Middle Triassic epoch, which is consistent with an active, ensialic mature volcanic arc developing along Laurussian southern active margins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geologica Acta
Geologica Acta 地学-地质学
CiteScore
2.50
自引率
6.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: - Relevant conceptual developments in any area of the Earth Sciences. - Studies presenting regional synthesis. - Thematic issues or monographic volumes presenting the results from one or more research groups. - Short papers reflecting interesting results or works in progress. - Contributions and results from Research Projects, Workshops, Symposiums, Congresses and any relevant scientific activity related to Earth Sciences. - Geologica Acta aims to stimulate rapid diffusion of results and efficient exchange of ideas between the widespread communities of Earth Science researchers (with special emphasis on Latinamerica, the Caribbean, Europe, the Mediterranean
期刊最新文献
Mass occurrence of planktic dendroid graptolite synrhabdosomes (Calyxdendrum) from the Early Ordovician Fezouata biota of Morocco Mineral chemistry and P-T conditions of the Karakaya volcanites at Kırka-Afyon-Isparta volcanic province, Afyon, Turkey Petrogenesis of the late Miocene Chenar volcanism in the southeast Urumieh-Dokhtar magmatic belt, Kerman, Iran: evidence from geochemical, U-Pb geochronologic, and Hf isotopic constraints Study of the rupture processes of the 1989 (Mw 6.9) and 2021 (Mw 7.0) Guerrero earthquakes using teleseismic records: Sismotectonic implications Understanding the spatio-temporal evolution of fractures in pillow basalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1