Ravneet Kaur Chahal, S. K. Dhillon, S. S. Kandhola, G. Kaur, V. Kaila, V. Tyagi
{"title":"向日葵(Helianthus Annuus L.)油脂含量及品质成分调控基因效应的大小和性质","authors":"Ravneet Kaur Chahal, S. K. Dhillon, S. S. Kandhola, G. Kaur, V. Kaila, V. Tyagi","doi":"10.1515/HELIA-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract The present research aimed to study gene effects for oil content and fatty acid composition in sunflower. It involved a set of 92 hybrids developed by crossing four CMS lines with 23 perfect restorers. Experiment was conducted at experimental field area of Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India. The data was recorded on oil content and quality traits. The analysis of variance revealed significant differences among the traits studied. Among the lines; CMS 42A was observed to have higher significant positive gca effects for oil content, linoleic acid & linolenic acid and higher significant negative gca effects for palmitic acid and stearic acid, whereas, for oleic acid line, CMS 40A had higher positive gca effects. Among the testers, TSG 275 had higher significant positive gca effects for linolenic acid and significant negative gca effects for stearic acid. High positive gca effects for oleic acid and oil content were observed for TSG 331. The tester OPH 91 was good combiner with high positive gca effects for oleic acid and negative gca effects for palmitic acid, whereas, tester TSG 288 exhibited highest positive gca effects for linoleic acid. The best cross combinations; CMS 40A×TSG 259, CMS 607A×TSG 271 and CMS 40A×OPH 73 showed significant specific combining ability effects for oil content and cross CMS 40A×TSG 289 had significant specific combining ability for oleic acid and linoleic acid. The cross combination CMS 40A×TSG 259 is giving a significant jump of over 12 % against the current commercial check for oil percentage and for other quality traits more than 50 % over the standard check, which is significant for undertaking improvement of hybrid for oil quality.","PeriodicalId":39086,"journal":{"name":"Helia","volume":"42 1","pages":"73 - 84"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/HELIA-2018-0006","citationCount":"5","resultStr":"{\"title\":\"Magnitude and Nature of Gene Effects Controlling Oil Content and Quality Components in Sunflower (Helianthus Annuus L.)\",\"authors\":\"Ravneet Kaur Chahal, S. K. Dhillon, S. S. Kandhola, G. Kaur, V. Kaila, V. Tyagi\",\"doi\":\"10.1515/HELIA-2018-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present research aimed to study gene effects for oil content and fatty acid composition in sunflower. It involved a set of 92 hybrids developed by crossing four CMS lines with 23 perfect restorers. Experiment was conducted at experimental field area of Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India. The data was recorded on oil content and quality traits. The analysis of variance revealed significant differences among the traits studied. Among the lines; CMS 42A was observed to have higher significant positive gca effects for oil content, linoleic acid & linolenic acid and higher significant negative gca effects for palmitic acid and stearic acid, whereas, for oleic acid line, CMS 40A had higher positive gca effects. Among the testers, TSG 275 had higher significant positive gca effects for linolenic acid and significant negative gca effects for stearic acid. High positive gca effects for oleic acid and oil content were observed for TSG 331. The tester OPH 91 was good combiner with high positive gca effects for oleic acid and negative gca effects for palmitic acid, whereas, tester TSG 288 exhibited highest positive gca effects for linoleic acid. The best cross combinations; CMS 40A×TSG 259, CMS 607A×TSG 271 and CMS 40A×OPH 73 showed significant specific combining ability effects for oil content and cross CMS 40A×TSG 289 had significant specific combining ability for oleic acid and linoleic acid. The cross combination CMS 40A×TSG 259 is giving a significant jump of over 12 % against the current commercial check for oil percentage and for other quality traits more than 50 % over the standard check, which is significant for undertaking improvement of hybrid for oil quality.\",\"PeriodicalId\":39086,\"journal\":{\"name\":\"Helia\",\"volume\":\"42 1\",\"pages\":\"73 - 84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/HELIA-2018-0006\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/HELIA-2018-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/HELIA-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Magnitude and Nature of Gene Effects Controlling Oil Content and Quality Components in Sunflower (Helianthus Annuus L.)
Abstract The present research aimed to study gene effects for oil content and fatty acid composition in sunflower. It involved a set of 92 hybrids developed by crossing four CMS lines with 23 perfect restorers. Experiment was conducted at experimental field area of Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India. The data was recorded on oil content and quality traits. The analysis of variance revealed significant differences among the traits studied. Among the lines; CMS 42A was observed to have higher significant positive gca effects for oil content, linoleic acid & linolenic acid and higher significant negative gca effects for palmitic acid and stearic acid, whereas, for oleic acid line, CMS 40A had higher positive gca effects. Among the testers, TSG 275 had higher significant positive gca effects for linolenic acid and significant negative gca effects for stearic acid. High positive gca effects for oleic acid and oil content were observed for TSG 331. The tester OPH 91 was good combiner with high positive gca effects for oleic acid and negative gca effects for palmitic acid, whereas, tester TSG 288 exhibited highest positive gca effects for linoleic acid. The best cross combinations; CMS 40A×TSG 259, CMS 607A×TSG 271 and CMS 40A×OPH 73 showed significant specific combining ability effects for oil content and cross CMS 40A×TSG 289 had significant specific combining ability for oleic acid and linoleic acid. The cross combination CMS 40A×TSG 259 is giving a significant jump of over 12 % against the current commercial check for oil percentage and for other quality traits more than 50 % over the standard check, which is significant for undertaking improvement of hybrid for oil quality.