{"title":"干旱环境中的碳酸盐岩含水层(突尼斯中部,西地中海省):重力和时域电磁法研究","authors":"Mohamed Hamrouni, H. Gabtni","doi":"10.1144/qjegh2022-121","DOIUrl":null,"url":null,"abstract":"Gravity and Time Domain Electromagnetic (TDEM) methods were used in this study to investigate the subsurface hydrogeology of the carbonate-rock aquifer in Arid Environments (Central Tunisia, Western Mediterranean province). The El Houdh basin can be considered an appropriate case for evaluating the vulnerability of groundwater resources under present-day climate change. The identification of structural context and the discontinuities affecting the Eocene/Campanian-Maastrichtian carbonates is an important key to recognize water recharge/discharge pathways and to develop effective and long-term groundwater exploration strategies. Firstly, we have produced an available residual gravity field using a specific Gaussian filter. Then, we generated derivative maps, Euler deconvolution solutions map and a 3D gravity model to delineate different anomalies and to estimate the depth-to-basement parameter and the subsurface density contrasts. Positive and negative anomalies mapping and 3D gravity modelling divulged that the El Houdh basin is associated with an asymmetric “perched syncline” with a segmentation into NE-SW sub-basins (local negative residual anomalies) separated by NW–SE lineaments. The TDEM survey was calibrated using boreholes to image the karst saturated and Unsaturated Zone and to deduce the Epikarst and Endokarst relationship. Finally, the proposed methodology presents a fast and valuable approach for better management of hydrogeological exploitation.\n \n Thematic collection:\n This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at:\n https://www.lyellcollection.org/cc/climate-change-and-resilience-in-engineering-geology-and-hydrogeology\n","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonate-rock aquifers in Arid Environments (Central Tunisia, Western Mediterranean province): Gravity and Time Domain Electromagnetic methods Investigations\",\"authors\":\"Mohamed Hamrouni, H. Gabtni\",\"doi\":\"10.1144/qjegh2022-121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravity and Time Domain Electromagnetic (TDEM) methods were used in this study to investigate the subsurface hydrogeology of the carbonate-rock aquifer in Arid Environments (Central Tunisia, Western Mediterranean province). The El Houdh basin can be considered an appropriate case for evaluating the vulnerability of groundwater resources under present-day climate change. The identification of structural context and the discontinuities affecting the Eocene/Campanian-Maastrichtian carbonates is an important key to recognize water recharge/discharge pathways and to develop effective and long-term groundwater exploration strategies. Firstly, we have produced an available residual gravity field using a specific Gaussian filter. Then, we generated derivative maps, Euler deconvolution solutions map and a 3D gravity model to delineate different anomalies and to estimate the depth-to-basement parameter and the subsurface density contrasts. Positive and negative anomalies mapping and 3D gravity modelling divulged that the El Houdh basin is associated with an asymmetric “perched syncline” with a segmentation into NE-SW sub-basins (local negative residual anomalies) separated by NW–SE lineaments. The TDEM survey was calibrated using boreholes to image the karst saturated and Unsaturated Zone and to deduce the Epikarst and Endokarst relationship. Finally, the proposed methodology presents a fast and valuable approach for better management of hydrogeological exploitation.\\n \\n Thematic collection:\\n This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at:\\n https://www.lyellcollection.org/cc/climate-change-and-resilience-in-engineering-geology-and-hydrogeology\\n\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2022-121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Carbonate-rock aquifers in Arid Environments (Central Tunisia, Western Mediterranean province): Gravity and Time Domain Electromagnetic methods Investigations
Gravity and Time Domain Electromagnetic (TDEM) methods were used in this study to investigate the subsurface hydrogeology of the carbonate-rock aquifer in Arid Environments (Central Tunisia, Western Mediterranean province). The El Houdh basin can be considered an appropriate case for evaluating the vulnerability of groundwater resources under present-day climate change. The identification of structural context and the discontinuities affecting the Eocene/Campanian-Maastrichtian carbonates is an important key to recognize water recharge/discharge pathways and to develop effective and long-term groundwater exploration strategies. Firstly, we have produced an available residual gravity field using a specific Gaussian filter. Then, we generated derivative maps, Euler deconvolution solutions map and a 3D gravity model to delineate different anomalies and to estimate the depth-to-basement parameter and the subsurface density contrasts. Positive and negative anomalies mapping and 3D gravity modelling divulged that the El Houdh basin is associated with an asymmetric “perched syncline” with a segmentation into NE-SW sub-basins (local negative residual anomalies) separated by NW–SE lineaments. The TDEM survey was calibrated using boreholes to image the karst saturated and Unsaturated Zone and to deduce the Epikarst and Endokarst relationship. Finally, the proposed methodology presents a fast and valuable approach for better management of hydrogeological exploitation.
Thematic collection:
This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at:
https://www.lyellcollection.org/cc/climate-change-and-resilience-in-engineering-geology-and-hydrogeology
期刊介绍:
Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House.
Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards.
The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.