高效节能的大规模MIMO网络

Q3 Environmental Science Tikrit Journal of Engineering Sciences Pub Date : 2023-08-02 DOI:10.25130/tjes.30.3.1
Israa Hilme, A. Abdulkafi
{"title":"高效节能的大规模MIMO网络","authors":"Israa Hilme, A. Abdulkafi","doi":"10.25130/tjes.30.3.1","DOIUrl":null,"url":null,"abstract":"Massive Multiple-Input Multiple-Output (Massive MIMO) is widely regarded as a highly promising technology for the forthcoming generation of wireless systems. The massive MIMO implementation involves the integration of a substantial number of antenna elements into base stations (BSs) to enhance spectral efficiency (SE) and energy efficiency (EE). The energy efficiency (EE) of base stations (BSs) has become an increasingly important issue for telecommunications network operators due to the need to take care of profitability while simultaneously minimizing their detrimental effects on the environment and addressing economic challenges faced by wireless communication operators. In this paper, the EE of massive MIMO networks and the relationship between EE, SE, and other parameters like bandwidth (B), number of antennas (M), circuit power, and number of users’ equipment (K) are discussed and investigated. For a fixed circuit power (PFIX), simulation results showed that the EE could be increased by about 1.12 as the number of antennas was doubled. The findings in this work also indicated an almost linear relationship between maximum EE and optimal SE, with a massive increase in the number of antennas when the power consumed by each antenna (PBS) was included in circuit power. In addition, when considering the power consumed per user’s equipment (PUE) impact, the SE increased with the ratio (M/K), in which SE showed a cubic relationship against M/K. On the other hand, the EE increased with M/K ratio until M/K reached a specific value. The maximum EE (and hence optimum SE) was achieved by massive MIMO, where the number of antennas was three times the number of users. However, EE started degrading after this value, as the number of antennas was considered larger than the users’ and consumed more energy, resulting in EE degradation.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Massive MIMO Network\",\"authors\":\"Israa Hilme, A. Abdulkafi\",\"doi\":\"10.25130/tjes.30.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Multiple-Input Multiple-Output (Massive MIMO) is widely regarded as a highly promising technology for the forthcoming generation of wireless systems. The massive MIMO implementation involves the integration of a substantial number of antenna elements into base stations (BSs) to enhance spectral efficiency (SE) and energy efficiency (EE). The energy efficiency (EE) of base stations (BSs) has become an increasingly important issue for telecommunications network operators due to the need to take care of profitability while simultaneously minimizing their detrimental effects on the environment and addressing economic challenges faced by wireless communication operators. In this paper, the EE of massive MIMO networks and the relationship between EE, SE, and other parameters like bandwidth (B), number of antennas (M), circuit power, and number of users’ equipment (K) are discussed and investigated. For a fixed circuit power (PFIX), simulation results showed that the EE could be increased by about 1.12 as the number of antennas was doubled. The findings in this work also indicated an almost linear relationship between maximum EE and optimal SE, with a massive increase in the number of antennas when the power consumed by each antenna (PBS) was included in circuit power. In addition, when considering the power consumed per user’s equipment (PUE) impact, the SE increased with the ratio (M/K), in which SE showed a cubic relationship against M/K. On the other hand, the EE increased with M/K ratio until M/K reached a specific value. The maximum EE (and hence optimum SE) was achieved by massive MIMO, where the number of antennas was three times the number of users. However, EE started degrading after this value, as the number of antennas was considered larger than the users’ and consumed more energy, resulting in EE degradation.\",\"PeriodicalId\":30589,\"journal\":{\"name\":\"Tikrit Journal of Engineering Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tikrit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25130/tjes.30.3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.30.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

大规模多输入多输出(Massive MIMO)被广泛认为是下一代无线系统中极具前景的技术。大规模MIMO实现涉及将大量天线元件集成到基站(BS)中以增强频谱效率(SE)和能量效率(EE)。基站(BS)的能源效率(EE)对于电信网络运营商来说已经成为一个越来越重要的问题,因为需要考虑盈利能力,同时将其对环境的不利影响降至最低,并解决无线通信运营商面临的经济挑战。本文讨论并研究了大规模MIMO网络的EE以及EE、SE与带宽(B)、天线数量(M)、电路功率和用户设备数量(K)等参数之间的关系。对于固定电路功率(PFIX),仿真结果表明,随着天线数量的增加,EE可以增加约1.12。这项工作中的发现还表明,最大EE和最佳SE之间几乎呈线性关系,当每个天线(PBS)消耗的功率包含在电路功率中时,天线数量大幅增加。此外,当考虑每个用户设备消耗的功率(PUE)的影响时,SE随着比率(M/K)而增加,其中SE与M/K呈三次关系。另一方面,EE随着M/K比的增加而增加,直到M/K达到特定值。最大EE(以及因此的最佳SE)是通过大规模MIMO实现的,其中天线的数量是用户数量的三倍。然而,在这个值之后,EE开始退化,因为天线的数量被认为大于用户的数量,并且消耗了更多的能量,导致EE退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficient Massive MIMO Network
Massive Multiple-Input Multiple-Output (Massive MIMO) is widely regarded as a highly promising technology for the forthcoming generation of wireless systems. The massive MIMO implementation involves the integration of a substantial number of antenna elements into base stations (BSs) to enhance spectral efficiency (SE) and energy efficiency (EE). The energy efficiency (EE) of base stations (BSs) has become an increasingly important issue for telecommunications network operators due to the need to take care of profitability while simultaneously minimizing their detrimental effects on the environment and addressing economic challenges faced by wireless communication operators. In this paper, the EE of massive MIMO networks and the relationship between EE, SE, and other parameters like bandwidth (B), number of antennas (M), circuit power, and number of users’ equipment (K) are discussed and investigated. For a fixed circuit power (PFIX), simulation results showed that the EE could be increased by about 1.12 as the number of antennas was doubled. The findings in this work also indicated an almost linear relationship between maximum EE and optimal SE, with a massive increase in the number of antennas when the power consumed by each antenna (PBS) was included in circuit power. In addition, when considering the power consumed per user’s equipment (PUE) impact, the SE increased with the ratio (M/K), in which SE showed a cubic relationship against M/K. On the other hand, the EE increased with M/K ratio until M/K reached a specific value. The maximum EE (and hence optimum SE) was achieved by massive MIMO, where the number of antennas was three times the number of users. However, EE started degrading after this value, as the number of antennas was considered larger than the users’ and consumed more energy, resulting in EE degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
56
审稿时长
8 weeks
期刊最新文献
Generative AI Chatbot for Engineering Scientific Journal MnO2 Nano Particles Modified a Double Layer Cathode Reactor for an Efficient Removal of DBT in Diesel Underwater Wireless Optical Communication for IOT using Coding MIMO Diversity Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study Cascaded H–Bridge Multilevel Inverter: Review of Topologies and Pulse Width Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1