通过测定烯烃共聚物在环己烷中的特性粘度,预测其增稠效率和混合基础油的运动粘度

Q1 Earth and Planetary Sciences Egyptian Journal of Petroleum Pub Date : 2022-06-01 DOI:10.1016/j.ejpe.2022.02.003
M.S. Negi, K. Naresh Kumar, Anil Bhardwaj, G.S. Kapur, S.S.V. Ramakumar
{"title":"通过测定烯烃共聚物在环己烷中的特性粘度,预测其增稠效率和混合基础油的运动粘度","authors":"M.S. Negi,&nbsp;K. Naresh Kumar,&nbsp;Anil Bhardwaj,&nbsp;G.S. Kapur,&nbsp;S.S.V. Ramakumar","doi":"10.1016/j.ejpe.2022.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>The engine oil contains various performance additives along with polymer-based viscosity index improver, which are made from special types of flexible long chain polymers whose functionality is derived from their thickening efficiency, viscosity-temperature relationship, and shear stability. Olefin copolymers of the type ethylene/propylene copolymer are extensively used as viscosity index improver for engine oil formulations whose performance is a function of their composition, co-monomer sequence distribution and molar mass. Polymer coils interact with base oil and make it increasingly resistant to flow which accounts for substantial changes in viscosity parameters i.e. kinematic viscosities and viscosity index of blended base oils. Intrinsic viscosity of a polymeric solution is an important “dilute solution viscosity” parameter, which is easily measurable using Ubbelohde viscometer.</p><p>In the present work, intrinsic viscosity of twenty samples of laboratory synthesized olefin copolymer in cyclohexane at 30 °C were correlated with their thickening efficiencies, kinematic viscosities of the olefin copolymer blended base oils at 40 °C and 100 °C. These correlation studies enable prediction of performance of olefin copolymer in blended base oil based on an easily and quickly measurable intrinsic viscosity parameter, leading to faster screening of large number of olefin copolymers for their utility as viscosity index improver in lubricants, in a short span of time with limited resources.</p></div>","PeriodicalId":11625,"journal":{"name":"Egyptian Journal of Petroleum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110062122000034/pdfft?md5=73fae21d0a9fc088e2b5386d3964c151&pid=1-s2.0-S1110062122000034-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Prediction of thickening efficiency of olefin copolymers and kinematic viscosities of the blended base oils by determining intrinsic viscosities of the copolymers in cyclohexane\",\"authors\":\"M.S. Negi,&nbsp;K. Naresh Kumar,&nbsp;Anil Bhardwaj,&nbsp;G.S. Kapur,&nbsp;S.S.V. Ramakumar\",\"doi\":\"10.1016/j.ejpe.2022.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The engine oil contains various performance additives along with polymer-based viscosity index improver, which are made from special types of flexible long chain polymers whose functionality is derived from their thickening efficiency, viscosity-temperature relationship, and shear stability. Olefin copolymers of the type ethylene/propylene copolymer are extensively used as viscosity index improver for engine oil formulations whose performance is a function of their composition, co-monomer sequence distribution and molar mass. Polymer coils interact with base oil and make it increasingly resistant to flow which accounts for substantial changes in viscosity parameters i.e. kinematic viscosities and viscosity index of blended base oils. Intrinsic viscosity of a polymeric solution is an important “dilute solution viscosity” parameter, which is easily measurable using Ubbelohde viscometer.</p><p>In the present work, intrinsic viscosity of twenty samples of laboratory synthesized olefin copolymer in cyclohexane at 30 °C were correlated with their thickening efficiencies, kinematic viscosities of the olefin copolymer blended base oils at 40 °C and 100 °C. These correlation studies enable prediction of performance of olefin copolymer in blended base oil based on an easily and quickly measurable intrinsic viscosity parameter, leading to faster screening of large number of olefin copolymers for their utility as viscosity index improver in lubricants, in a short span of time with limited resources.</p></div>\",\"PeriodicalId\":11625,\"journal\":{\"name\":\"Egyptian Journal of Petroleum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110062122000034/pdfft?md5=73fae21d0a9fc088e2b5386d3964c151&pid=1-s2.0-S1110062122000034-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Petroleum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110062122000034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Petroleum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110062122000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4

摘要

发动机润滑油含有各种性能添加剂以及聚合物型粘度指数改进剂,这些改进剂是由特殊类型的柔性长链聚合物制成的,其功能来源于其增稠效率、粘温关系和剪切稳定性。乙烯/丙烯共聚物类型的烯烃共聚物被广泛用作机油配方的粘度指数改进剂,其性能是其组成、共聚单体序列分布和摩尔质量的函数。聚合物线圈与基础油相互作用,使其越来越耐流动,这导致了粘度参数的实质性变化,即混合基础油的运动粘度和粘度指数。聚合物溶液的特性粘度是一个重要的“稀溶液粘度”参数,用乌伯洛德粘度计可以很容易地测量。在本工作中,20个实验室合成的环己烷烯烃共聚物样品在30°C时的特性粘度与它们的增稠效率、烯烃共聚物混合基础油在40°C和100°C时的运动粘度相关。这些相关性研究能够基于一个容易且快速测量的特征粘度参数来预测混合基础油中烯烃共聚物的性能,从而在有限的资源下,在短时间内更快地筛选出大量烯烃共聚物,以用作润滑剂的粘度指数改善剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of thickening efficiency of olefin copolymers and kinematic viscosities of the blended base oils by determining intrinsic viscosities of the copolymers in cyclohexane

The engine oil contains various performance additives along with polymer-based viscosity index improver, which are made from special types of flexible long chain polymers whose functionality is derived from their thickening efficiency, viscosity-temperature relationship, and shear stability. Olefin copolymers of the type ethylene/propylene copolymer are extensively used as viscosity index improver for engine oil formulations whose performance is a function of their composition, co-monomer sequence distribution and molar mass. Polymer coils interact with base oil and make it increasingly resistant to flow which accounts for substantial changes in viscosity parameters i.e. kinematic viscosities and viscosity index of blended base oils. Intrinsic viscosity of a polymeric solution is an important “dilute solution viscosity” parameter, which is easily measurable using Ubbelohde viscometer.

In the present work, intrinsic viscosity of twenty samples of laboratory synthesized olefin copolymer in cyclohexane at 30 °C were correlated with their thickening efficiencies, kinematic viscosities of the olefin copolymer blended base oils at 40 °C and 100 °C. These correlation studies enable prediction of performance of olefin copolymer in blended base oil based on an easily and quickly measurable intrinsic viscosity parameter, leading to faster screening of large number of olefin copolymers for their utility as viscosity index improver in lubricants, in a short span of time with limited resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Journal of Petroleum
Egyptian Journal of Petroleum Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
7.70
自引率
0.00%
发文量
29
审稿时长
84 days
期刊介绍: Egyptian Journal of Petroleum is addressed to the fields of crude oil, natural gas, energy and related subjects. Its objective is to serve as a forum for research and development covering the following areas: • Sedimentation and petroleum exploration. • Production. • Analysis and testing. • Chemistry and technology of petroleum and natural gas. • Refining and processing. • Catalysis. • Applications and petrochemicals. It also publishes original research papers and reviews in areas relating to synthetic fuels and lubricants - pollution - corrosion - alternate sources of energy - gasification, liquefaction and geology of coal - tar sands and oil shale - biomass as a source of renewable energy. To meet with these requirements the Egyptian Journal of Petroleum welcomes manuscripts and review papers reporting on the state-of-the-art in the aforementioned topics. The Egyptian Journal of Petroleum is also willing to publish the proceedings of petroleum and energy related conferences in a single volume form.
期刊最新文献
Laboratory investigation of removal of total petroleum hydrocarbons from oil-contaminated soil using Santolina plant Inherent radiological hazard and γ-rays shielding properties of black sand minerals Preparation and Characterization of Chemically Converted Graphene From Natural Graphite Exploring CO2-EOR miscibility flooding potential for Horus oil field, Western Desert, Egypt: a simulation-based investigation Identification of petroleum degrading bacteria and the status of oil pool in South of Minas Field, Central Sumatra Basin Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1