{"title":"具有大核的图的最大谱半径","authors":"Xiaocong He, Lihua Feng, D. Stevanović","doi":"10.13001/ela.2023.7283","DOIUrl":null,"url":null,"abstract":"The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\\leq k\\leq m\\leq n$, we denote $R_{n, k, m}=K_k\\vee(K_{m-k}\\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum spectral radius of graphs with a large core\",\"authors\":\"Xiaocong He, Lihua Feng, D. Stevanović\",\"doi\":\"10.13001/ela.2023.7283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\\\\leq k\\\\leq m\\\\leq n$, we denote $R_{n, k, m}=K_k\\\\vee(K_{m-k}\\\\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7283\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7283","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
The maximum spectral radius of graphs with a large core
The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\leq k\leq m\leq n$, we denote $R_{n, k, m}=K_k\vee(K_{m-k}\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.