亚硒酸钠和合成硒纳米粒子对生菜硝酸盐积累及理化特性的影响

Q2 Agricultural and Biological Sciences International Journal of Vegetable Science Pub Date : 2022-04-16 DOI:10.1080/19315260.2022.2065654
Mahsa Mohammadi, A. Abbasifar, Babak ValizadehKaji
{"title":"亚硒酸钠和合成硒纳米粒子对生菜硝酸盐积累及理化特性的影响","authors":"Mahsa Mohammadi, A. Abbasifar, Babak ValizadehKaji","doi":"10.1080/19315260.2022.2065654","DOIUrl":null,"url":null,"abstract":"ABSTRACT Exogenous selenium (SE) application during lettuce (Lactuca sativa L.) production may prevent Se deficiency. Low concentrations of Se have beneficial effects on plant cell metabolism and application of Se can increase growth, yield, and quality and reduce nitrate concentration in lettuce. In the present study, biosynthetic synthesis of selenium (Se) nanoparticles (NPs) was carried out via Se ions reduction during exposure to rosemary (Salvia rosmarinus Spenn.) extract. Using scanning electron microscopy (SEM), the shape and size of the Se NPs were determined. To investigate effects of concentrations of sodium selenite (1, 2, and 4 mg∙L−1) and Se NPs (1, 2, and 4 mg∙L−1) on morphological and physiochemical traits of lettuce. Most nutrient solutions, especially 2 mg∙L−1 Se NPs, increased plant height, leaf number, fresh weight, chlorophyll a, total chlorophyll, and nitrate reductase activity of plants. Application of 2 and 1 mg∙L−1 Se NPs, caused a decrease in the level of nitrate accumulation. Under nutrient treatments, concentrations of P, K, Fe, Zn, and Se, and concentration of N decreased. Foliar application of biosynthetic synthesized Se NPs, may have potential for improved quantity and reduced nitrate accumulation in lettuce.","PeriodicalId":40028,"journal":{"name":"International Journal of Vegetable Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nitrate accumulation and physicochemical characteristics of lettuce as affected by sodium selenite and synthesized selenium nanoparticles\",\"authors\":\"Mahsa Mohammadi, A. Abbasifar, Babak ValizadehKaji\",\"doi\":\"10.1080/19315260.2022.2065654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Exogenous selenium (SE) application during lettuce (Lactuca sativa L.) production may prevent Se deficiency. Low concentrations of Se have beneficial effects on plant cell metabolism and application of Se can increase growth, yield, and quality and reduce nitrate concentration in lettuce. In the present study, biosynthetic synthesis of selenium (Se) nanoparticles (NPs) was carried out via Se ions reduction during exposure to rosemary (Salvia rosmarinus Spenn.) extract. Using scanning electron microscopy (SEM), the shape and size of the Se NPs were determined. To investigate effects of concentrations of sodium selenite (1, 2, and 4 mg∙L−1) and Se NPs (1, 2, and 4 mg∙L−1) on morphological and physiochemical traits of lettuce. Most nutrient solutions, especially 2 mg∙L−1 Se NPs, increased plant height, leaf number, fresh weight, chlorophyll a, total chlorophyll, and nitrate reductase activity of plants. Application of 2 and 1 mg∙L−1 Se NPs, caused a decrease in the level of nitrate accumulation. Under nutrient treatments, concentrations of P, K, Fe, Zn, and Se, and concentration of N decreased. Foliar application of biosynthetic synthesized Se NPs, may have potential for improved quantity and reduced nitrate accumulation in lettuce.\",\"PeriodicalId\":40028,\"journal\":{\"name\":\"International Journal of Vegetable Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vegetable Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19315260.2022.2065654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vegetable Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19315260.2022.2065654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

摘要莴苣生产过程中外源硒(SE)的施用可以预防硒缺乏。低浓度硒对植物细胞代谢有有益影响,施硒可促进生菜生长、产量和品质,降低硝酸盐浓度。在本研究中,通过暴露于迷迭香(Salvia rosmarinus Spenn.)提取物中的硒离子还原,进行了硒(Se)纳米粒子(NPs)的生物合成。利用扫描电子显微镜(SEM)测定了Se纳米粒子的形状和大小。研究亚硒酸钠浓度(1、2和4 mg∙L−1)和硒NPs浓度(1、2和4 mg∙L−1)对生菜形态和理化性状的影响。大多数营养液,特别是2 mg∙L−1 Se NPs,增加了植株的株高、叶数、鲜重、叶绿素a、总叶绿素和硝酸盐还原酶活性。施用2和1 mg∙L−1 Se NPs导致硝酸盐积累水平下降。在养分处理下,磷、钾、铁、锌、硒的浓度和氮的浓度降低。叶面施用生物合成硒NPs可能有提高生菜产量和减少硝酸盐积累的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrate accumulation and physicochemical characteristics of lettuce as affected by sodium selenite and synthesized selenium nanoparticles
ABSTRACT Exogenous selenium (SE) application during lettuce (Lactuca sativa L.) production may prevent Se deficiency. Low concentrations of Se have beneficial effects on plant cell metabolism and application of Se can increase growth, yield, and quality and reduce nitrate concentration in lettuce. In the present study, biosynthetic synthesis of selenium (Se) nanoparticles (NPs) was carried out via Se ions reduction during exposure to rosemary (Salvia rosmarinus Spenn.) extract. Using scanning electron microscopy (SEM), the shape and size of the Se NPs were determined. To investigate effects of concentrations of sodium selenite (1, 2, and 4 mg∙L−1) and Se NPs (1, 2, and 4 mg∙L−1) on morphological and physiochemical traits of lettuce. Most nutrient solutions, especially 2 mg∙L−1 Se NPs, increased plant height, leaf number, fresh weight, chlorophyll a, total chlorophyll, and nitrate reductase activity of plants. Application of 2 and 1 mg∙L−1 Se NPs, caused a decrease in the level of nitrate accumulation. Under nutrient treatments, concentrations of P, K, Fe, Zn, and Se, and concentration of N decreased. Foliar application of biosynthetic synthesized Se NPs, may have potential for improved quantity and reduced nitrate accumulation in lettuce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vegetable Science
International Journal of Vegetable Science Agricultural and Biological Sciences-Plant Science
CiteScore
3.10
自引率
0.00%
发文量
30
期刊介绍: The International Journal of Vegetable Science features innovative articles on all aspects of vegetable production, including growth regulation, pest management, sustainable production, harvesting, handling, storage, shipping, and final consumption. Researchers, practitioners, and academics present current findings on new crops and protected culture as well as traditional crops, examine marketing trends in the commercial vegetable industry, and address vital issues of concern to breeders, production managers, and processors working in all continents where vegetables are grown.
期刊最新文献
Improving marketable yield and phytochemical characteristics of N-fertilized tomato fruits with soil organic amendments through Azolla Cyanobacterium priming of tomato and spinach nursery stimulates seedling vigor and yields Development of a brinjal hybrid with innate resistance to brinjal shoot and fruit borer ( Leucinodes orbonalis ) On farm diversity and genetic erosion of sweet potato [ Ipomoea batatas (L.) Lam.] Comparison of inorganic fertilizer with biostimulants and coenzyme Q10 to enhance radish performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1