{"title":"通过化学设计的纳米药物进行基于亚细胞靶向的高级治疗","authors":"A. Sarkar, N. Jana","doi":"10.22580/iscinotej7.7.3","DOIUrl":null,"url":null,"abstract":"Although the origin of disease and drug targets are primarily at intracellular space, such targeting is not achievable in currently available drugs. We and others recently show that molecular drugs can be transformed into nanodrug for better subcellular targeting with the enhanced therapeutic performance. This can be achieved via appropriate size and surface chemistry of colloidal nanodrug to control or bypass the endocytic uptake and intracellular trafficking processes. This approach can be adapted for enhanced drug performance with lower side effects.","PeriodicalId":92659,"journal":{"name":"iScience notes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subcellular Targeting-Based Advanced Therapy Via Chemically Designed Nanodrug\",\"authors\":\"A. Sarkar, N. Jana\",\"doi\":\"10.22580/iscinotej7.7.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the origin of disease and drug targets are primarily at intracellular space, such targeting is not achievable in currently available drugs. We and others recently show that molecular drugs can be transformed into nanodrug for better subcellular targeting with the enhanced therapeutic performance. This can be achieved via appropriate size and surface chemistry of colloidal nanodrug to control or bypass the endocytic uptake and intracellular trafficking processes. This approach can be adapted for enhanced drug performance with lower side effects.\",\"PeriodicalId\":92659,\"journal\":{\"name\":\"iScience notes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22580/iscinotej7.7.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22580/iscinotej7.7.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subcellular Targeting-Based Advanced Therapy Via Chemically Designed Nanodrug
Although the origin of disease and drug targets are primarily at intracellular space, such targeting is not achievable in currently available drugs. We and others recently show that molecular drugs can be transformed into nanodrug for better subcellular targeting with the enhanced therapeutic performance. This can be achieved via appropriate size and surface chemistry of colloidal nanodrug to control or bypass the endocytic uptake and intracellular trafficking processes. This approach can be adapted for enhanced drug performance with lower side effects.